早教吧作业答案频道 -->其他-->
数列{an}是以a为着项,q为公比的等比数列,令bn=1-a1-a2-a3-…-an,Cn=2-b1-b2-b3-…-bn.n∈N*(1)试用a,q表示bn和cn;(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;(3)是否存在实数对(a,q)
题目详情
数列{an}是以a为着项,q为公比的等比数列,令bn=1-a1-a2-a3-…-an,Cn=2-b1-b2-b3-…-bn.n∈N*
(1)试用a,q表示bn和cn;
(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;
(3)是否存在实数对(a,q),其中q≠1,使{cn}成等比数列,若存在,求出实数对(a,q)和{cn}的通项公式;若不存在,请说明理由.
(1)试用a,q表示bn和cn;
(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;
(3)是否存在实数对(a,q),其中q≠1,使{cn}成等比数列,若存在,求出实数对(a,q)和{cn}的通项公式;若不存在,请说明理由.
▼优质解答
答案和解析
(1)当q=1时,an=a,bn=1-na,cn=2+
.
当q≠1时,an=aqn-1,bn=1-
+
,cn=2-(1-
)n-
•
=2-
+
n+
(2)cn+1-cn=-bn+1=-1+
-
=-1+
(1-qn+1),
因为1+q+q2+…+qn=
(q≠1)
由已知q>0,
1+q+q2+…+qn>0,即
>0
又a<0,则
(1-qn+1)<0
亦即-1+
(1-qn+1)<0.
所以cn+1-cn<0,即cn+1<cn;
(3)∵cn=2-
+
n-
,
若{cn}成等比数列,则令
| n(na+a-2) |
| 2 |
当q≠1时,an=aqn-1,bn=1-
| a |
| 1-q |
| aqn |
| 1-q |
| a |
| 1-q |
| a |
| 1-q |
| q(1-qn) |
| 1-q |
| aq |
| (1-q)2 |
| q-1+a |
| 1-q |
| aqn+1 |
| (1-q)2 |
(2)cn+1-cn=-bn+1=-1+
| a |
| 1-q |
| aqn+1 |
| 1-q |
| a |
| 1-q |
因为1+q+q2+…+qn=
| 1-qn+1 |
| 1-q |
由已知q>0,
1+q+q2+…+qn>0,即
| 1-qn+1 |
| 1-q |
又a<0,则
| a |
| 1-q |
亦即-1+
| a |
| 1-q |
所以cn+1-cn<0,即cn+1<cn;
(3)∵cn=2-
| aq |
| (1-q)2 |
| q-1+a |
| 1-q |
| aqn+1 |
| (1-q)2 |
若{cn}成等比数列,则令
作业帮用户
2017-09-28
举报
![]() |
看了 数列{an}是以a为着项,q...的网友还看了以下:
已知公差不为0的等差数列{an}的首项为a(a属于R),且1/a1,1/a2,1/a3成等比数列. 2020-05-13 …
已知各项均不为零的数列{an}的前n项和为Sn,且Sn=ana(n+1)/2,其中a1=1.若不等 2020-05-13 …
在任意两个正整数m,n之间定义一种运算关系“*”:(m+1)*n=m*n+2,m*(n+1)=m* 2020-05-14 …
设2^a=5^b=n,且1/a+1/b=1,则n=10判断真假命题 2020-06-03 …
已知a>b>c,n∈N*,且1/(a-b)+1/(b-c)≥n/a-c,求n的最大值并将此不等式推 2020-06-07 …
1.等差数列AN中,若首项A1=6,末项AN=-6,公差D为整数,则项数N(N>且=1)的最大值为 2020-07-30 …
已知函数f(x)=abs(x-1)+…+abs(x-20)x∈N+,且1≤x≤20已知函数f(x)= 2020-11-04 …
用列举法表示下列集合.要过程方法(1){x|(2-x)分之6∈Z,x∈Z}(2){x|x=b分之a, 2020-11-15 …
设随机变量X,Y都服从N(0,1),并且相互独立,试问随机变量Y1=1/3(x+y)^2和Y2=1/ 2020-11-28 …
高二不等式题1.已知a,b∈R.a+b+a^2+b^2=24则A-8≤a+b≤6B-6≤a+b≤8C 2020-12-31 …
扫描下载二维码