早教吧作业答案频道 -->其他-->
数列{an}是以a为着项,q为公比的等比数列,令bn=1-a1-a2-a3-…-an,Cn=2-b1-b2-b3-…-bn.n∈N*(1)试用a,q表示bn和cn;(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;(3)是否存在实数对(a,q)
题目详情
数列{an}是以a为着项,q为公比的等比数列,令bn=1-a1-a2-a3-…-an,Cn=2-b1-b2-b3-…-bn.n∈N*
(1)试用a,q表示bn和cn;
(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;
(3)是否存在实数对(a,q),其中q≠1,使{cn}成等比数列,若存在,求出实数对(a,q)和{cn}的通项公式;若不存在,请说明理由.
(1)试用a,q表示bn和cn;
(2)若a<0,q>0且q≠1,试比较cn与cn+1的大小;
(3)是否存在实数对(a,q),其中q≠1,使{cn}成等比数列,若存在,求出实数对(a,q)和{cn}的通项公式;若不存在,请说明理由.
▼优质解答
答案和解析
(1)当q=1时,an=a,bn=1-na,cn=2+
.
当q≠1时,an=aqn-1,bn=1-
+
,cn=2-(1-
)n-
•
=2-
+
n+
(2)cn+1-cn=-bn+1=-1+
-
=-1+
(1-qn+1),
因为1+q+q2+…+qn=
(q≠1)
由已知q>0,
1+q+q2+…+qn>0,即
>0
又a<0,则
(1-qn+1)<0
亦即-1+
(1-qn+1)<0.
所以cn+1-cn<0,即cn+1<cn;
(3)∵cn=2-
+
n-
,
若{cn}成等比数列,则令
| n(na+a-2) |
| 2 |
当q≠1时,an=aqn-1,bn=1-
| a |
| 1-q |
| aqn |
| 1-q |
| a |
| 1-q |
| a |
| 1-q |
| q(1-qn) |
| 1-q |
| aq |
| (1-q)2 |
| q-1+a |
| 1-q |
| aqn+1 |
| (1-q)2 |
(2)cn+1-cn=-bn+1=-1+
| a |
| 1-q |
| aqn+1 |
| 1-q |
| a |
| 1-q |
因为1+q+q2+…+qn=
| 1-qn+1 |
| 1-q |
由已知q>0,
1+q+q2+…+qn>0,即
| 1-qn+1 |
| 1-q |
又a<0,则
| a |
| 1-q |
亦即-1+
| a |
| 1-q |
所以cn+1-cn<0,即cn+1<cn;
(3)∵cn=2-
| aq |
| (1-q)2 |
| q-1+a |
| 1-q |
| aqn+1 |
| (1-q)2 |
若{cn}成等比数列,则令
作业帮用户
2017-09-28
举报
![]() |
看了 数列{an}是以a为着项,q...的网友还看了以下:
已知数列{an}是公差不为0的等差数列,a1=2且a3,a5,a8成等比数列.(1)求数列{an} 2020-04-09 …
已知等差数列{an}的公差大于0,且a3 a5是方程x^2-14x+45=0的两根,数列{bn}的 2020-05-17 …
1.设四阶方阵A=(a1,a2,a3,a4),且a1,a2,a3线性无关,a4=a1+a2+a3, 2020-07-09 …
线性代数的几道题,1.设四阶方阵A=(a1,a2,a3,a4),且a1,a2,a3线性无关,a4= 2020-07-09 …
已知a是大于1的实数,且有a3+a-3=p,a3-a-3=q成立.(1)若p+q=4,求p-q的值 2020-07-09 …
若用反证法证明“若a>b,则a3>b3”,假设内容应是()A.a3<b3B.a3=b3C.a3<b 2020-07-09 …
已知数列{cn}的通项公式cn=根号2^n,若数列是以d为公差的等差数列,且a3=c2,a6=c6 2020-07-09 …
已知数列{an}是等比数列,Sn为数列{an}的前n项和,且a3=3,S3=9(1)求数列{an} 2020-07-21 …
已知等差数列{an}的前n项和为Sn,S13=91,等比数列{bn}中首项b1=3,公比q=2,且a 2020-10-31 …
已知数列{An}满足2a(n+1)=an+a(n+2),它的前n项和为An,且A3=5,A6=36. 2020-12-08 …
扫描下载二维码