早教吧作业答案频道 -->其他-->
已知⊙O过点D(4,3),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.(1)求sin∠HAO的值;(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长D
题目详情
已知⊙O过点D(4,3),点H与点D关于x轴对称,过H作⊙O的切线交x轴于点A.
(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.

(1)求sin∠HAO的值;
(2)如图,设⊙O与x轴正半轴交点为P,点E、F是线段OP上的动点(与点P不重合),连接并延长DE、DF交⊙O于点B、C,直线BC交x轴于点G,若△DEF是以EF为底的等腰三角形,试探索sin∠CGO的大小怎样变化,请说明理由.

▼优质解答
答案和解析
(1)点D(3,4)在⊙O上,
∴⊙O的半径r=OD=5;
如图,连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,
∴∠HAO=∠OHQ,
∴sin∠HAO=sin∠OHQ=
=
;
(2)不变.
如图,设点D关于x轴的对称点为H,连接HD交OP于Q,则HD⊥OP,
又DE=DF,
∴DH平分∠BDC,
∴
=
.
∴连接OH,则OH⊥BC,
在Rt△OKG与Rt△OHQ中,
∵∠OKG=∠OEH=90°,∠HOG=∠HOG,
∴∠CGO=∠OHQ,
∴sin∠CGO=sin∠OHQ=
=
,
所以不变.
(1)点D(3,4)在⊙O上,∴⊙O的半径r=OD=5;
如图,连接HD交OA于Q,则HD⊥OA,连接OH,则OH⊥AH,
∴∠HAO=∠OHQ,
∴sin∠HAO=sin∠OHQ=
| OQ |
| OH |
| 3 |
| 5 |
(2)不变.
如图,设点D关于x轴的对称点为H,连接HD交OP于Q,则HD⊥OP,
又DE=DF,
∴DH平分∠BDC,
∴
![]() |
| BH |
![]() |
| CH |
∴连接OH,则OH⊥BC,
在Rt△OKG与Rt△OHQ中,
∵∠OKG=∠OEH=90°,∠HOG=∠HOG,
∴∠CGO=∠OHQ,
∴sin∠CGO=sin∠OHQ=
| OQ |
| OH |
| 3 |
| 5 |
所以不变.
看了 已知⊙O过点D(4,3),点...的网友还看了以下:
一道初中题、、、50分、、急当x=2时,抛物线y=ax²+bx+c取得最小值-1,并且抛物线与y轴 2020-05-16 …
一个标准椭圆,建直角坐标系,圆上面的点p与坐标O点构成线段c,线段c与x轴所构成的角为z.点p沿椭 2020-05-16 …
(2014•平房区三模)如图一,直线y=-43x+4与x轴交于点A,与y轴交于点c,在第一象限内将 2020-06-13 …
抛物线y=x^2-2x-3与x轴交与A,B两点,与y轴交与C点.设直线y=-x+3与y轴的交点抛物 2020-06-14 …
已知在平面直角坐标系xOy中(如图),抛物线y=ax2-4与x轴的负半轴相交于点A,与y轴相交于点 2020-06-14 …
已知圆(x+1)^2+y^2=8的圆心F,设点A为圆上任意一点,N(1,0),线段AN的垂直平分线 2020-06-15 …
已知直线y=2x+6与x轴y轴交于A、B两点,直线L经过原点与线段AB交于点C,把△ABO的面积分 2020-06-23 …
一道压轴题,要详解;如图.抛物线Y=ax^2-2ax+b经过A(-1,0),C(2,3/2)两点, 2020-07-22 …
),与x轴交于A、B两点(A在B的左边).(1)求此抛物线的表达式;(2)点P是线段OB上一动点( 2020-07-22 …
如图,抛物线y=-1/2(x-5/2)²+9/8与X轴相交于A、B两点,与Y轴相交于C点,过点C做C 2021-01-11 …

