早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知n阶矩阵A满足2A^2+A-3E=0,证明:A,(3E-A)可逆,并求A的逆和(3E-A)的逆.

题目详情
已知n阶矩阵A满足2A^2+A-3E=0,证明:A,(3E-A)可逆,并求A的逆和(3E-A)的逆.
▼优质解答
答案和解析
A(2A+E)=3E,或A(2A/3+E/3)=E,因此A可逆,A^(--1)=2A/3+E/3.
(3E--A)(--7E--2A)=--21E+A+2A^2=--18E,因此
(3E--A)(2A+7E)/18=E,故(3E--A)可逆,且(3E--A)^(--1)=(2A+7E)/18