早教吧 育儿知识 作业答案 考试题库 百科 知识分享

sin2x/cosx+sin^2x的不定积分,

题目详情
sin2x/cosx+sin^2x的不定积分,
▼优质解答
答案和解析
设cosx=t x=arccost dx=-dt/√(1-t^2)
∫sin2x/(cosx+sin^2x) dx
=-2∫t √(1-t^2)dt/[(1-t-t^2)√(1-t^2)]
=∫(-2t-1)dt/[(1-t-t^2)+∫dt/[(1-t-t^2)
=ln|1-t-t^2|+∫dt/(5/4-(t+1/2)^2)
=ln|1-t-t^2|+2√5/5arth(√5/5*(2t+1))+C
=ln|1-cosx-cos^2x|+2√5/5arth(2cosx)+C