早教吧作业答案频道 -->数学-->
已知x>0,y>0,x+y=1,则x^2/(x+2)+y^2/(y+1)的最小值为
题目详情
已知x>0,y>0,x+y=1, 则x^2/(x+2)+y^2/(y+1)的最小值为
▼优质解答
答案和解析
∵x+y=1
∴(x+2)+(y+1)=4
x^2/(x+2)+y^2/(y+1)
=[(x+2)-2]^2/(x+2)+[(y+1)-1]^2/(y+1)
=[(x+2)^2-4(x+2)+4]/(x+2)+[(y+1)^2-2(y+1)+1]/(y+1)
=(x+2)-4+4/(x+2)+(y+1)-2+1/(y+1)
=4/(x+2)+1/(y+1)+(x+y-3)
=[4/(x+2)+1/(y+1)] *[(x+2)+(y+1)]/4 -2
=[4+1+(x+2)/(y+1)+4(y+1)/(x+2)]/4-2
≥5+2√4-2=7
∴
x^2/(x+2)+y^2/(y+1)的最小值为7
∴(x+2)+(y+1)=4
x^2/(x+2)+y^2/(y+1)
=[(x+2)-2]^2/(x+2)+[(y+1)-1]^2/(y+1)
=[(x+2)^2-4(x+2)+4]/(x+2)+[(y+1)^2-2(y+1)+1]/(y+1)
=(x+2)-4+4/(x+2)+(y+1)-2+1/(y+1)
=4/(x+2)+1/(y+1)+(x+y-3)
=[4/(x+2)+1/(y+1)] *[(x+2)+(y+1)]/4 -2
=[4+1+(x+2)/(y+1)+4(y+1)/(x+2)]/4-2
≥5+2√4-2=7
∴
x^2/(x+2)+y^2/(y+1)的最小值为7
看了已知x>0,y>0,x+y=1...的网友还看了以下:
(1)利用基本不等式证明不等式:已知a>3,求证a+4a?3≥7;(2)已知x>0,y>0,且x+ 2020-05-13 …
(1)已知x>0,则y=(x^2-4x+1)/1的最小值为多少(2)已知0<x<1,则x(3-3x 2020-05-16 …
6、已知x>0,y>0,x+3y=1,则1的最小值是()A.B.2C.46、已知x>0,y>0,x 2020-06-03 …
若x+y<0,xy<0,x>y,则有A.x>0,y<0,|x|>|y|B.x>0,y<0,|y|> 2020-07-09 …
三道高一基本不等式急求y=√(2x-1)+√(5-2x)的最大值(2分之1<x<2分之5)已知x> 2020-08-03 …
设x>0,y>0,z>0,且x2+y2+z2=1.(Ⅰ)求证:xy+yz+xz≤1;(Ⅱ)求(yzx 2020-11-01 …
设[x]表示不大于x的最大整数,{x}表示不小于x的最小整数,<x>表示最接近x的整数(x≠n+0. 2020-11-07 …
阅读理解析当a>0且x>0时,因为≥0,所以≥0,从而≥(当时取等号).设,由上述结论可知:当时,y 2020-11-24 …
已知函数y=Asin(ωx+φ)(φ>0,ω>0,A>0)的最大值是2(2π/3,2)已知函数y=A 2020-12-08 …
阅读理解:当a>0且x>0时,因为(.变形应用:已知y1=x+1(x>-1)与y2=(x+1)2+4 2020-12-25 …