早教吧作业答案频道 -->数学-->
已知函数f(x)=1+lnx-k(x-2)x,其中k为常数.(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若k=5,求f(x)零点的个数;(3)若k为整数,且当x>2时,f(x)>0恒成立,求
题目详情
已知函数f(x)=1+lnx-
,其中k为常数.
(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若k=5,求f(x)零点的个数;
(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.(参考数据ln8=2.08,ln9=2.20,ln10=2.30)
k(x-2) |
x |
(1)若k=0,求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若k=5,求f(x)零点的个数;
(3)若k为整数,且当x>2时,f(x)>0恒成立,求k的最大值.(参考数据ln8=2.08,ln9=2.20,ln10=2.30)
▼优质解答
答案和解析
(1)当k=0时,f(x)=1+lnx.因为f′(x)=
,从而f'(1)=1.
又f(1)=1,所以曲线y=f(x)在点(1,f(1))处的切线方程y-1=x-1,
即x-y=0.
(2)当k=5时,f(x)=lnx+
-4.因为f′(x)=
,从而,
当x∈(0,10),f'(x)<0,f(x)单调递减;
当x∈(10,+∞)时,f'(x)>0,f(x)单调递增.
所以当x=10时,f(x)有极小值.
因f(10)=ln10-3<0,f(1)=6>0,
所以f(x)在(1,10)之间有一个零点.
因为f(e4)=4+
-4>0,
所以f(x)在(10,e4)之间有一个零点.
从而f(x)有两个不同的零点.
(3)由题意知,1+lnx-
>0对x∈(2,+∞)恒成立,
即k<
对x∈(2,+∞)恒成立.
令h=
,则h′(x)=
.
设v(x)=x-2lnx-4,则v′(x)=
.
当x∈(2,+∞)时,v'(x)>0,
所以v(x)在(2,+∞)为增函数.
因为v(8)=8-2ln8-4=4-2ln8<0,v(9)=5-2ln9>0,
所以存在x0∈(8,9),v(x0)=0,即x0-2lnx0-4=0.
当x∈(2,x0)时,h'(x)<0,h(x)单调递减,
当x∈(x0,+∞)时,h'(x)>0,h(x)单调递增.
所以当x=x0时,h(x)的最小值h(x0)=
.
因为lnx0=
,所以h(x0)=
∈(4,4.5).
故所求的整数k的最大值为4.
1 |
x |
又f(1)=1,所以曲线y=f(x)在点(1,f(1))处的切线方程y-1=x-1,
即x-y=0.
(2)当k=5时,f(x)=lnx+
10 |
x |
x-10 |
x2 |
当x∈(0,10),f'(x)<0,f(x)单调递减;
当x∈(10,+∞)时,f'(x)>0,f(x)单调递增.
所以当x=10时,f(x)有极小值.
因f(10)=ln10-3<0,f(1)=6>0,
所以f(x)在(1,10)之间有一个零点.
因为f(e4)=4+
10 |
e4 |
所以f(x)在(10,e4)之间有一个零点.
从而f(x)有两个不同的零点.
(3)由题意知,1+lnx-
k(x-2) |
x |
即k<
x+xlnx |
x-2 |
令h=
x+xlnx |
x-2 |
x-2lnx-4 |
(x-2)2 |
设v(x)=x-2lnx-4,则v′(x)=
x-2 |
x |
当x∈(2,+∞)时,v'(x)>0,
所以v(x)在(2,+∞)为增函数.
因为v(8)=8-2ln8-4=4-2ln8<0,v(9)=5-2ln9>0,
所以存在x0∈(8,9),v(x0)=0,即x0-2lnx0-4=0.
当x∈(2,x0)时,h'(x)<0,h(x)单调递减,
当x∈(x0,+∞)时,h'(x)>0,h(x)单调递增.
所以当x=x0时,h(x)的最小值h(x0)=
x0+x0lnx0 |
x0-2 |
因为lnx0=
x0-4 |
2 |
x0 |
2 |
故所求的整数k的最大值为4.
看了已知函数f(x)=1+lnx-...的网友还看了以下:
已知函数f(x)=x2/1+x2(1)求f(2)+f(1/2),f(3)+f(1/3)的值(2)求 2020-05-12 …
1.什么叫从集合a到集合b的函数?2.判断下列是不是从集合a到集合b的函数题1--a={1/2,1 2020-05-13 …
符号"f"表示一种新运算,它对一些数的运算结果如下:①f(-2)=-2-1=-3,f(-1)=-1 2020-05-16 …
已知函数f(x)=-x+loga^1-x/1+x,则f(-1/5)+f(-1/4)+f(-1/3) 2020-06-09 …
急,今天八点钟之前就要,六、求下列函数的定义域:(1)f(x)=3/x+1;(2)f(x)=3/x 2020-07-14 …
判断下列对应f是否为从集合A到集合B的函数.(数学)1.A={1/2,1,3/2},B={-6,- 2020-08-02 …
如果记y=x^2/1+x^2=f(x)并且f(x)表示当x=1时y的值,即f(1)=1^2/1+1^ 2020-10-31 …
对于整数x,规定f(x)=x/1+x,例如f(3)=3/1+3=3/4(1):计算f(m)+f(-m 2020-11-06 …
已知f(x)是奇函数,且有f(x+1)=-1/f(x),当x∈(0,1/2)时,f(x)=8^x(1 2020-11-07 …
f(x)=x2/1+x2,求f(1)+f(2)+f(1/2)+f(3)+f(1/3)+f(4)+f( 2021-02-02 …