如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且A(-1,0),OB=OC=3OA.(1)试求抛物线的解析式;(2)如图2,点P是第一象限抛物线上的一点,连接AC、PB、PC.且S四边形OBPC
(1)试求抛物线的解析式;
(2)如图2,点P是第一象限抛物线上的一点,连接AC、PB、PC.且S四边形OBPC=5S△AOC,试求点P的坐标?
(3)如图3,定长为1的线段MN在抛物线的对称轴上上下滑动,连接CM、AN.记m=CM+MN+AN,试问:m是否有最小值?如果有,请求m的最小值;如果没有,请说明理由.

\uff081\uff09\u7531A\uff08-1\uff0c0\uff09\uff0cOB=OC=3OA\uff0c\u5f97
OB=OC=3\uff0c
\u5373B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c
\u628aA\uff0cB\uff0cC\u7684\u5750\u6807\u4ee3\u5165\u51fd\u6570\u89e3\u6790\u5f0f\uff0c\u5f97
\u89e3\u5f97
\u629b\u7269\u7ebf\u7684\u89e3\u6790\u5f0f\u4e3ay=-x2+2x+3\uff1b S\u56db\u8fb9\u5f62OBPC=S\u25b3OBC+S\u25b3PBC = =- \u7531S\u56db\u8fb9\u5f62OBPC=5S\u25b3AOC\uff0c \u5f97- \u5316\u7b80\uff0c\u5f97 n2-3n+2=0\uff0c m\u6700\u5c0f=CM+MN+AN=C\u2033A+MN=1+ \uff081\uff09\u7531A\uff08-1\uff0c0\uff09\uff0cOB=OC=3OA\uff0c\u5f97 \u89e3\u5f97$\\left \\{ {{\\begin{array}{ll} {a=-1} \\\\ {b=2} \\\\ {c=3} \\end{array}}} \\right .$ \u629b\u7269\u7ebf\u7684\u89e3\u6790\u5f0f\u4e3ay=-x2+2x+3\uff1b S\u56db\u8fb9\u5f62OBPC=S\u25b3OBC+S\u25b3PBC =$\\dfrac {1} {2}$\u00d73\u00d73+$\\dfrac {1} {2}$\u00d73\uff08-n2+3n\uff09 =-$\\dfrac {3} {2}$n2+$\\dfrac {9} {2}n+\\dfrac {9} {2}$ \u7531S\u56db\u8fb9\u5f62OBPC=5S\u25b3AOC\uff0c \u5f97-$\\dfrac {3} {2}$n2+$\\dfrac {9} {2}$n+$\\dfrac {9} {2}$=$\\dfrac {3} {2}$\u00d75\uff0e \u5316\u7b80\uff0c\u5f97 n2-3n+2=0\uff0c $C''A=\\sqrt {{AD}^{2}+{C''D}^{2}}=\\sqrt {{(2+1)}^{2}+{2}^{2}}=\\sqrt {13}$ m\u6700\u5c0f=CM+MN+AN=C\u2033A+MN=1+$\\sqrt {13}$
\uff082\uff09\u4f5cPM\u22a5x\u8f74\u4ea4BC\u4e8eM\u70b9\uff0c\u5982\u56fe1\uff0c
\u7531B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c\u5f97BC\u7684\u89e3\u6790\u5f0f\u4e3ay=-x+3\uff0c
\u8bbeP\u70b9\u5750\u6807\u4e3a\uff08n\uff0c-n2+2n+3\uff09\uff0cM\uff08n\uff0c-n+3\uff09\uff0e
PM\u7684\u957f\u4e3a-n2+2n+3-\uff08-n+3\uff09=-n2+3n\uff0c
S\u25b3AOC=AO\u2022OC=
\u00d73\u00d73+
\u00d73\uff08-n2+3n\uff09
n2+
n2+
n+
=
\u00d75\uff0e
\u89e3\u5f97n1=1\uff0cn2=2\uff0c
P\u70b9\u5750\u6807\u4e3a\uff081\uff0c4\uff09\uff082\uff0c3\uff09\uff1b
\uff083\uff09m\u6709\u6700\u5c0f\u503c\uff0c\u7406\u7531\u5982\u4e0b\uff1a
\u5728OC\u4e0a\u4f5cCC\u2032=MN=1\uff0c\u5982\u56fe2\uff0c
\u4f5cC\u2032\u5173\u4e8e\u5bf9\u79f0\u8f74\u7684\u5bf9\u79f0\u70b9\uff0c\u8fde\u63a5C\u2033A\uff0c
CM+AN=AC\u2033\u53d6\u5f97\u6700\u5c0f\u503c\u4e3aC\u2033A\uff0e
\u5728Rt\u25b3ADC\u2033\u4e2d\uff0c\u7531\u52fe\u80a1\u5b9a\u7406\uff0c\u5f97
" "latex":"
OB=OC=3\uff0c
\u5373B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c
\u628aA\uff0cB\uff0cC\u7684\u5750\u6807\u4ee3\u5165\u51fd\u6570\u89e3\u6790\u5f0f\uff0c\u5f97
$\\left \\{ {{\\begin{array}{ll} {a-b+c=0} \\\\ {9a+3b+c=0} \\\\ {c=3} \\end{array}}} \\right .$
\uff082\uff09\u4f5cPM\u22a5x\u8f74\u4ea4BC\u4e8eM\u70b9\uff0c\u5982\u56fe1\uff0c
\u7531B\uff083\uff0c0\uff09\uff0cC\uff080\uff0c3\uff09\uff0c\u5f97BC\u7684\u89e3\u6790\u5f0f\u4e3ay=-x+3\uff0c
\u8bbeP\u70b9\u5750\u6807\u4e3a\uff08n\uff0c-n2+2n+3\uff09\uff0cM\uff08n\uff0c-n+3\uff09\uff0e
PM\u7684\u957f\u4e3a-n2+2n+3-\uff08-n+3\uff09=-n2+3n\uff0c
S\u25b3AOC=$\\dfrac {1} {2}$AO\u2022OC=$\\dfrac {1} {2}\\times 1\\times 3=\\dfrac {3} {2}$
\u89e3\u5f97n1=1\uff0cn2=2\uff0c
P\u70b9\u5750\u6807\u4e3a\uff081\uff0c4\uff09\uff082\uff0c3\uff09\uff1b
\uff083\uff09m\u6709\u6700\u5c0f\u503c\uff0c\u7406\u7531\u5982\u4e0b\uff1a
\u5728OC\u4e0a\u4f5cCC\u2032=MN=1\uff0c\u5982\u56fe2\uff0c
\u4f5cC\u2032\u5173\u4e8e\u5bf9\u79f0\u8f74\u7684\u5bf9\u79f0\u70b9\uff0c\u8fde\u63a5C\u2033A\uff0c
CM+AN=AC\u2033\u53d6\u5f97\u6700\u5c0f\u503c\u4e3aC\u2033A\uff0e
\u5728Rt\u25b3ADC\u2033\u4e2d\uff0c\u7531\u52fe\u80a1\u5b9a\u7406\uff0c\u5f97
"}
二次函数y=ax²+bx+c中a的几何意义就像b是抛物线与y轴的交点的切线一样a除了跟开二次函数y 2020-05-13 …
如图,在平面直角坐标系中,点A(2,3)为二次函数y=ax2+bx-2(a≠0)与反比例函数y=k 2020-05-14 …
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,去当△ac 2020-05-15 …
那重庆2013中考数学(A卷)的25题呢?如图,对称轴为直线x=-1的抛物线y=ax2+bx+c( 2020-05-15 …
已知:抛物线 y=ax2+bx-2(a≠0)的对称轴为x=-1 与 x轴交于A,B 两点,与 y轴 2020-05-15 …
急!求初三一道数学题两小时内要解答如图(图上的大致内容是:A在X轴负半轴,B在X轴正半轴,C在Y轴 2020-06-06 …
已知抛物线y=ax²+bx+c(a≠0)与x轴的两个交点的坐标分别为(2,0),(-3/2,0)则 2020-06-14 …
f(x)是以a为周期的周期函数,证明f(bx)是以a/b为周期的周期函数 2020-08-02 …
(2014?潍坊)如图,抛物线y=ax2+bx+c(a≠0)与y轴交于点C(0,4),与x轴交于点A 2020-11-13 …
二次函数高手入!NO.1抛物线y=ax^2+bx+c当c大于0时,抛物线交y轴正半轴,c小于0时,抛 2020-12-08 …