如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,去当△acd的如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求当△ACD的面积达到最大时点Q的坐标
(1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,
∴A、B两点关于直线x=-1对称,
∵点A的坐标为(-3,0)
∴点B的坐标为(1,0)
(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
对称轴x=-b/(2a)=-1
解得b=2.
将B(1,0)代入y=x^2+2x+c,
得1+2+c=0,解得c=-3.
则二次函数的解析式为y=x^2+2x-3,
∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.
设P点坐标为(x,x^2+2x-3),
∵S△POC=4S△BOC,
1/2*|x|*3=4*1/2*1*3
∴|x|=4,x=±4.
当x=4时,x^2+2x-3=16+8-3=21;
当x=-4时,x^2+2x-3=16-8-3=5.
所以点P的坐标为(4,21)或(-4,5);
②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,
得
−3k+t=0
t=−3
解得
k=−1
t=−3
即直线AC的解析式为y=-x-3.
延长AD交y轴于E
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x^2+2x-3),
E(0,3(x-1))
△ACD的面积=△ACE面积-△DCE面积
=1/2*3*(3(1-x)-3)-1/2*(-x)*(3(1-x)-3)
=-3/2x^2-9/2x
对称轴x=-3/2时有最大值,满足-3≤x≤0
∴Q=(-3/2,-3/2)
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
横截面面积相等,材料不同的两等截面直杆,承受相同的轴内拉力,则两杆的().A轴力相同,横截面的正应 2020-05-13 …
若点(2x,x+3)在x轴上方,y轴的右侧,且该点到x轴与到y轴的距离相等,则x的值为.A.1 B 2020-05-13 …
如果点(2x,x+3)在x轴上方,y轴的右侧且该点到x轴与y轴的距离相等,求x的值(要过程) 2020-05-13 …
急救!与两个坐标轴距离相等的点的轨迹方程是?……与两个坐标轴距离相等的点的轨迹方程是?A,y=|x 2020-05-16 …
如图,二次函数y=ax2+bx+c=0(a≠0)的图象与x轴正半轴相交于A、B两点,与y轴相交于点 2020-06-12 …
求XX相X的成语如:惺惺相惜 2020-06-12 …
已知关于X的方程(a+b)x^2-2ax+a=0有两个不相等的实数根x1,x2,并且抛物线y=x^ 2020-06-27 …
直线l的解析式为y=-x+4,它与x轴,y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发 2020-06-29 …
相X相X的成语 2020-07-11 …
一米尺静止于S′系中,米尺与O′x′的轴夹角为60°.S′系相对于S系沿Ox轴正向的运动速度为0. 2020-07-13 …