如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,去当△acd的如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求当△ACD的面积达到最大时点Q的坐标
(1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,
∴A、B两点关于直线x=-1对称,
∵点A的坐标为(-3,0)
∴点B的坐标为(1,0)
(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
对称轴x=-b/(2a)=-1
解得b=2.
将B(1,0)代入y=x^2+2x+c,
得1+2+c=0,解得c=-3.
则二次函数的解析式为y=x^2+2x-3,
∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.
设P点坐标为(x,x^2+2x-3),
∵S△POC=4S△BOC,
1/2*|x|*3=4*1/2*1*3
∴|x|=4,x=±4.
当x=4时,x^2+2x-3=16+8-3=21;
当x=-4时,x^2+2x-3=16-8-3=5.
所以点P的坐标为(4,21)或(-4,5);
②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,
得
−3k+t=0
t=−3
解得
k=−1
t=−3
即直线AC的解析式为y=-x-3.
延长AD交y轴于E
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x^2+2x-3),
E(0,3(x-1))
△ACD的面积=△ACE面积-△DCE面积
=1/2*3*(3(1-x)-3)-1/2*(-x)*(3(1-x)-3)
=-3/2x^2-9/2x
对称轴x=-3/2时有最大值,满足-3≤x≤0
∴Q=(-3/2,-3/2)
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
如图,直线l1:y=x+3与x轴交与点A,与y轴交于点P,直线l2:y=-2x+m与x轴交于点B, 2020-04-26 …
三个平面两两垂直,设它们的交线为a.b.c则这三条线的关系是 2020-05-13 …
已知抛物线Y等于aX²—2X+c与它的对称轴相较于点A(1,-4),与y轴交与点C,与X轴正半轴交 2020-05-16 …
已知抛物线y=ax^2-2x+c与它的对称轴相交与点A(1,-4),与y轴交于点C,与x轴正半轴交 2020-05-16 …
直线AB:y=-x-b分别与x、y轴交于A (6,0)、B两点,过点B的直线交x轴负半轴于C,且O 2020-05-17 …
帮下忙,初4二次函数抛物线y=1/2x^2-3/2mx-2m交X轴A(X1,0)B(X2,0)交Y 2020-06-27 …
(2014•深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛 2020-07-26 …
如何,直线y=2x十3与x轴相交于点A,与y轴交于点p.(1)求A,B两点的坐标过B点作直线B如何, 2020-11-04 …
已知:抛物线与x轴交于点A(-2,0),B(8,0),与y轴交于点C(0,4)25.已知:抛物线与x 2020-11-27 …
已知如图,直线AB:y=-x+8与x轴,y轴分别交与点B,A,过点B作直线AB的垂线交y轴与点D已知 2021-01-11 …