如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A,B两点,去当△acd的如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;
如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).
(1)求点B的坐标;
(2)已知a=1,C为抛物线与y轴的交点.
①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;
②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求当△ACD的面积达到最大时点Q的坐标
(1)∵对称轴为直线x=-1的抛物线y=ax^2+bx+c(a≠0)与x轴相交于A、B两点,
∴A、B两点关于直线x=-1对称,
∵点A的坐标为(-3,0)
∴点B的坐标为(1,0)
(2)①a=1时,∵抛物线y=x2+bx+c的对称轴为直线x=-1,
对称轴x=-b/(2a)=-1
解得b=2.
将B(1,0)代入y=x^2+2x+c,
得1+2+c=0,解得c=-3.
则二次函数的解析式为y=x^2+2x-3,
∴抛物线与y轴的交点C的坐标为(0,-3),OC=3.
设P点坐标为(x,x^2+2x-3),
∵S△POC=4S△BOC,
1/2*|x|*3=4*1/2*1*3
∴|x|=4,x=±4.
当x=4时,x^2+2x-3=16+8-3=21;
当x=-4时,x^2+2x-3=16-8-3=5.
所以点P的坐标为(4,21)或(-4,5);
②设直线AC的解析式为y=kx+t,将A(-3,0),C(0,-3)代入,
得
−3k+t=0
t=−3
解得
k=−1
t=−3
即直线AC的解析式为y=-x-3.
延长AD交y轴于E
设Q点坐标为(x,-x-3)(-3≤x≤0),则D点坐标为(x,x^2+2x-3),
E(0,3(x-1))
△ACD的面积=△ACE面积-△DCE面积
=1/2*3*(3(1-x)-3)-1/2*(-x)*(3(1-x)-3)
=-3/2x^2-9/2x
对称轴x=-3/2时有最大值,满足-3≤x≤0
∴Q=(-3/2,-3/2)
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线垂线..(判断对错) 2020-05-21 …
直线的点向式和点斜式方程(数学)⒈求证:A(-6,2)B(2,-2)C(8,-5)三点在同一条直线 2020-06-03 …
在同一平面内,过一点可能有两条以上的直线与已知直线平行吗?任意画一条直线a,在直线外取点P,并过点 2020-06-06 …
在直线L上有两个点,在L上就有1条线段,在直线L上有三个点,在L上就有2+1=3条线段:在直线L上 2020-06-11 …
光线沿直线L1:2x+y-3=0照射到直线L2:x+y+4=0上后反射,求反射线所在直线L3的方程 2020-06-12 …
点到直线的距离是指()A.从直线外一点到这条直线的垂线B.从直线外一点到这条直线的垂线段C.从直线 2020-06-19 …
已知直线过点(1)若直线在坐标轴上的截距相等,求直线的方程;(2)若直线与坐标轴的正半轴相交,求使 2020-07-13 …
已知直线的一点和另一平行直线的方程求该方程已知直线I过点(0,2)求该直线方程①直线I与直线3x- 2020-07-21 …
7、下列命题中的真命题是()A、垂直于同一直线的两条直线平行B、平行于同一直线的两条直线平行C、两 2020-07-23 …
下列条件中能得到互相平行的直线的是()A.互为邻补角的角平分线所在的直线B.对顶角的平分线所在的直 2020-07-23 …