早教吧作业答案频道 -->数学-->
设{an}是由正数组成的等比数列,Sn是其前n项和.(1)证明;(2)是否存在常数c>0,使得成立?并证明你的结论.
题目详情
设{an}是由正数组成的等比数列,Sn是其前n项和.
(1)证明
;
(2)是否存在常数c>0,使得
成立?并证明你的结论.
(1)证明

(2)是否存在常数c>0,使得

▼优质解答
答案和解析
(1)设{an}的公比为q,当q=1时根据Sn•Sn+2-Sn+12求得结果小于0,不符合;当q≠1时利用等比数列求和公式求得Sn•Sn+2-Sn+12<0,进而推断Sn•Sn+2,<Sn+12.根据对数函数的单调性求得lg(Sn•Sn+2)<lgSn+12,原式得证.
(2)要使
.成立,则有
进而分两种情况讨论当q=1时根据(Sn-c)(Sn+2-c)=(Sn+1-c)2求得-a12<0不符合题意;当q≠1时求得(Sn-c)(Sn+2-c)-(Sn+1-c)2=-a1qn[a1-c(1-q)],进而推知a1-c(1-q)=0,判断出0<q<1,但此时
不符合题意,最后综合可得结论.
(1)证明:设{an}的公比为q,由题设a1>0,q>0.
(i)当q=1时,Sn=na1,从而
Sn•Sn+2-Sn+12
=na1•(n+2)a1-(n+1)2a12
=-a12<0
(ⅱ)当q≠1时,
,从而
Sn•Sn+2-Sn+12=
=-a12qn<0.
由(i)和(ii)得Sn•Sn+2,<Sn+12.根据对数函数的单调性,知
lg(Sn•Sn+2)<lgSn+12,
即
.
(2)【解析】
不存在.
要使
.成立,则有

分两种情况讨论:
(i)当q=1时,
(Sn-c)(Sn+2-c)=(Sn+1-c)2
=(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2
=-a12<0.
可知,不满足条件①,即不存在常数c>0,使结论成立.
(ii)当q≠1时,若条件①成立,因为
(Sn-c)(Sn+2-c)-(Sn+1-c)2
=
=-a1qn[a1-c(1-q)],
且a1qn≠0,故只能有a1-c(1-q)=0,即
此时,因为c>0,a1>0,所以0<q<1.
但0<q<1时,
,不满足条件②,即不存在常数c>0,使结论成立.
综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使
.
(2)要使



(1)证明:设{an}的公比为q,由题设a1>0,q>0.
(i)当q=1时,Sn=na1,从而
Sn•Sn+2-Sn+12
=na1•(n+2)a1-(n+1)2a12
=-a12<0
(ⅱ)当q≠1时,

Sn•Sn+2-Sn+12=

=-a12qn<0.
由(i)和(ii)得Sn•Sn+2,<Sn+12.根据对数函数的单调性,知
lg(Sn•Sn+2)<lgSn+12,
即

(2)【解析】
不存在.
要使


分两种情况讨论:
(i)当q=1时,
(Sn-c)(Sn+2-c)=(Sn+1-c)2
=(na1-c)[(n+2)a1-c]-[(n+1)a1-c]2
=-a12<0.
可知,不满足条件①,即不存在常数c>0,使结论成立.
(ii)当q≠1时,若条件①成立,因为
(Sn-c)(Sn+2-c)-(Sn+1-c)2
=

=-a1qn[a1-c(1-q)],
且a1qn≠0,故只能有a1-c(1-q)=0,即

此时,因为c>0,a1>0,所以0<q<1.
但0<q<1时,

综合(i)、(ii),同时满足条件①、②的常数c>0不存在,即不存在常数c>0,使

看了设{an}是由正数组成的等比数...的网友还看了以下:
证明C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n) 2020-04-26 …
数列{an}和{bn}的前n项和分别记为An和Bn,已知an=-n-3/2,4Bn-12An=13 2020-06-06 …
下列词语中加点字注音全部正确的一项是:A.驯服xùn豇豆jiānɡ孝悌之义tì股肱之臣ɡōnɡB. 2020-07-15 …
是否存在常数a,b,c,使等式1×2²+2×2²+…+n﹙n+1﹚²=[n﹙n+1﹚]/12×﹙a 2020-07-22 …
一道函数证明题设f(x)=ax^2+bx+c是整系数二次三项式,m,n是整数,且f(m)与f(n) 2020-07-31 …
方程组的证明方程组ax1^2+bx1+c=x2ax2^2+bx2+c=x3.ax(n-1)^2+b 2020-08-01 …
望高手赐教,高一数列……递推公式a(n+1)=[a(n)+a]/[a(n)+b]a,b皆为非零常数 2020-08-01 …
2n能整除C(2n,证明下,2n能整除C(2n,证明下,证明:对于任意n,其中2n不能整除C(2n 2020-08-01 …
⑴若数列{an}是等差数列,证明sn=n(a1+an)/2拜托拉⑵数列{a}满足{a1=b,an=1 2020-10-31 …
[构词串记]1.invent(v.)—(n.)发明;发明物—(n.)发明者;发明家2.usual(a 2020-12-21 …