早教吧作业答案频道 -->数学-->
望高手赐教,高一数列……递推公式a(n+1)=[a(n)+a]/[a(n)+b]a,b皆为非零常数首项是1有一种答题的方法是把a(n+1)以及a(n)都看做x,解一元二次方程得到两个解c,d则可以证明a(n+1)+c=a(n+1)+d~~~~~~
题目详情
望高手赐教,高一数列……
递推公式a(n+1)=[a(n)+a]/[a(n)+b] a,b皆为非零常数 首项是1
有一种答题的方法是把a(n+1)以及a(n)都看做x,解一元二次方程得到两个解c,d
则可以证明a(n+1)+c=a(n+1)+d ~~~~~~~~~~~~(为什么可以得出这个结论呢?)
然后根据待定系数法解出通项公式(这里可以自己解决)
请数学高手解答为什么a(n+1)+c=a(n+1)+d . 以及赋值非零常数ab,解一次过程
sorry 我只记得前几步,但是解出CD是绝对是对的,只是后面的变换过程出了点问题,请继续完成,谢谢
递推公式a(n+1)=[a(n)+a]/[a(n)+b] a,b皆为非零常数 首项是1
有一种答题的方法是把a(n+1)以及a(n)都看做x,解一元二次方程得到两个解c,d
则可以证明a(n+1)+c=a(n+1)+d ~~~~~~~~~~~~(为什么可以得出这个结论呢?)
然后根据待定系数法解出通项公式(这里可以自己解决)
请数学高手解答为什么a(n+1)+c=a(n+1)+d . 以及赋值非零常数ab,解一次过程
sorry 我只记得前几步,但是解出CD是绝对是对的,只是后面的变换过程出了点问题,请继续完成,谢谢
▼优质解答
答案和解析
当an为常数列时,首项是1,得出a=b,
一元二次方程x(x+b)=x+a,等价于x(x+a)=x+a,
即(x-1)*(x+a)=0,an为常数列,
即方程的解只有1,得出a=-1.
一元二次方程x(x+b)=x+a,等价于x(x+a)=x+a,
即(x-1)*(x+a)=0,an为常数列,
即方程的解只有1,得出a=-1.
看了 望高手赐教,高一数列……递推...的网友还看了以下:
二次函数y=ax²+bx+c的图像如图所示,若M=4a+2b+c,N=a-b+c,P=4a+2b, 2020-05-16 …
N'N-二(2-羟丙基)-N'N-四甲基己烯二胺有谁知道这个东西那里有销售的,或者是相关产品,以及 2020-06-05 …
高二解不等式C(n-5)n>C3(n-2)+2C2(n-2)+n-2解不等式C(n-5)n>C3( 2020-07-09 …
设n为正整数,证明1+(1/2)C(n,1)+(1/3)C(n,2)+(1/4)C(n,3)+…+ 2020-07-31 …
什么是二项式的通式?在二项式定理(a+b)^n=C(n,0)a^n+C(n,1)a^(n-1)b+ 2020-07-31 …
一道二项式的题目设n是满足C(n,0)+C(n,1)+2C(n,2)+……+nC(n,n)C(n, 2020-07-31 …
望高手赐教,高一数列……递推公式a(n+1)=[a(n)+a]/[a(n)+b]a,b皆为非零常数 2020-08-01 …
(2012•青浦区二模)化合物M是一种药物.以乳酸为原料合成M以及高分子化合物N的路线如图所示.根据 2020-10-31 …
孩子不懂,只好求助朋友们啦,先谢谢^O^二次函数y=ax²+bx+c的图象如图一所示,若M=4a+2 2021-01-22 …
不等关系及一元二次不等式的解法1.若不等式ax^2+bx+c>0的解集为{x|-1<x<2},那么不 2021-01-22 …