早教吧作业答案频道 -->数学-->
证明C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
题目详情
证明C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
▼优质解答
答案和解析
我给你一个很简洁的证明:
首先看C(n,2n).构造一个项C(n,2n)*t^n
容易看出这一项,是恒等式
(1+t)^2n=C(0,2n)*t^0+C(1,2n)*t^1+……+C(2n,2n)*t^2n
中的n次项
考察等式左边:(1+t)^2n=(1+t)^n*(1+t)^n
(1+t)^n=C(0,n)*t^0+C(1,n)*t^1+……+C(n,n)*t^n
把两个(1+t)^n的展开式的t的k次幂与t的n-k次幂相乘,使之得到t的n次幂:
也就是
[C(k,n)*t^k]*[C(n-k,n)*t^n-k]=[C(k,n)]^2*(t^n)
把所有这样的项相加,得到
C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
而这是t的n次幂的系数,应该等于右边的t的n次幂的系数,即C(n,2n)
证毕.
希望能够追加10分!不求太多!
首先看C(n,2n).构造一个项C(n,2n)*t^n
容易看出这一项,是恒等式
(1+t)^2n=C(0,2n)*t^0+C(1,2n)*t^1+……+C(2n,2n)*t^2n
中的n次项
考察等式左边:(1+t)^2n=(1+t)^n*(1+t)^n
(1+t)^n=C(0,n)*t^0+C(1,n)*t^1+……+C(n,n)*t^n
把两个(1+t)^n的展开式的t的k次幂与t的n-k次幂相乘,使之得到t的n次幂:
也就是
[C(k,n)*t^k]*[C(n-k,n)*t^n-k]=[C(k,n)]^2*(t^n)
把所有这样的项相加,得到
C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
而这是t的n次幂的系数,应该等于右边的t的n次幂的系数,即C(n,2n)
证毕.
希望能够追加10分!不求太多!
看了 证明C(0,n)^2+C(1...的网友还看了以下:
已知递增数列{an}满足:a1=1,2a(n+1)=an+a(n+2)(n∈N*),且a1,a2, 2020-05-13 …
2^2-1^2=2*1+13^2-2^2=2*2+14^2-3^2=2*3+1……(n+1)^2- 2020-05-19 …
记f(n)=(3n+2)(C22+C23+C24+…+C2n)(n≥2,n∈N*).(1)求f(2 2020-06-17 …
已知数列{an}是等差数列,且满足:a1+a2+a3=6,a5=5;数列{bn}满足:bn-bn- 2020-07-09 …
求n/(n^2+1)+n/(n^2+2^2)+……+n/(n^2+n^2)在n趋于无穷时的极限求n 2020-07-20 …
已知数列{an}的前n项和为Sn,Sn与an满足关系Sn=2-(n+2)an/n(n∈N*)(1) 2020-07-28 …
问:将M={1,2,3,4},N={2,4,6,8},f:n=2m,n属于N,m属于M用映射符号表 2020-07-30 …
用数学归纳法证明(n+1)(n+2)…(n+n)=2n·1·3·5·…(2n-1)(n∈N*)时, 2020-08-03 …
(2011•钟祥市模拟)设函数f(x)=xn(n≥2,n∈N*)(1)若Fn(x)=f(x-a)+f 2020-11-13 …
我们可以通过计算求得:1+2+3+...+n=n*(n+1)除以2,其中n是正整数,现在我们来研究一 2020-12-04 …