早教吧作业答案频道 -->数学-->
证明C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
题目详情
证明C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
▼优质解答
答案和解析
我给你一个很简洁的证明:
首先看C(n,2n).构造一个项C(n,2n)*t^n
容易看出这一项,是恒等式
(1+t)^2n=C(0,2n)*t^0+C(1,2n)*t^1+……+C(2n,2n)*t^2n
中的n次项
考察等式左边:(1+t)^2n=(1+t)^n*(1+t)^n
(1+t)^n=C(0,n)*t^0+C(1,n)*t^1+……+C(n,n)*t^n
把两个(1+t)^n的展开式的t的k次幂与t的n-k次幂相乘,使之得到t的n次幂:
也就是
[C(k,n)*t^k]*[C(n-k,n)*t^n-k]=[C(k,n)]^2*(t^n)
把所有这样的项相加,得到
C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
而这是t的n次幂的系数,应该等于右边的t的n次幂的系数,即C(n,2n)
证毕.
希望能够追加10分!不求太多!
首先看C(n,2n).构造一个项C(n,2n)*t^n
容易看出这一项,是恒等式
(1+t)^2n=C(0,2n)*t^0+C(1,2n)*t^1+……+C(2n,2n)*t^2n
中的n次项
考察等式左边:(1+t)^2n=(1+t)^n*(1+t)^n
(1+t)^n=C(0,n)*t^0+C(1,n)*t^1+……+C(n,n)*t^n
把两个(1+t)^n的展开式的t的k次幂与t的n-k次幂相乘,使之得到t的n次幂:
也就是
[C(k,n)*t^k]*[C(n-k,n)*t^n-k]=[C(k,n)]^2*(t^n)
把所有这样的项相加,得到
C(0,n)^2+C(1,n)^2+……+C(n,n)^2=C(n,2n)
而这是t的n次幂的系数,应该等于右边的t的n次幂的系数,即C(n,2n)
证毕.
希望能够追加10分!不求太多!
看了 证明C(0,n)^2+C(1...的网友还看了以下:
(1+x)+(1+x)^2+(1+x)^3+.+(1+x)^n=a0+a1*x+a2*x^2+.a 2020-05-20 …
求证:(1)A(n+1,n+1)-A(n,n)=n^2A(n-1,n-1);(2)C(m,n+1) 2020-06-03 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
幂集的个数为什么是2的幂次方,这个我知道,能证明一下2^n=C(n,0)+C(n,1)+C(n,2 2020-07-29 …
设n为正整数,证明1+(1/2)C(n,1)+(1/3)C(n,2)+(1/4)C(n,3)+…+ 2020-07-31 …
一个关于组合的证明题——证明:C(n+m,r)=C(n,0)C(m,r)+C(n,1)C(m,r- 2020-08-01 …
一道组合证明题,证明C(n,0)+2C(n,1)+……+(n+1)C(n,n)=2^n+n*2^( 2020-08-01 …
一道组合证明题证明:1+1/2C1n+1/3Cn2+……+1/(n+1)Cnn=1/(n+1)(C 2020-08-01 …
方程组的证明方程组ax1^2+bx1+c=x2ax2^2+bx2+c=x3.ax(n-1)^2+b 2020-08-01 …
望高手赐教,高一数列……递推公式a(n+1)=[a(n)+a]/[a(n)+b]a,b皆为非零常数 2020-08-01 …