早教吧 育儿知识 作业答案 考试题库 百科 知识分享

对正整数n≥2,记an=n−1i=1nn−i•12i−1(1)求a2,a3,a4,a5的值;(2)求证:当n≥5时,有an≤103.

题目详情
对正整数n≥2,记an=
n−1
i=1
n
n−i
1
2i−1

(1)求a2,a3,a4,a5的值;
(2)求证:当n≥5时,有an≤
10
3
▼优质解答
答案和解析
(1)依题意,a2=
2
2−1
1
21−1
=2
同理可得a3=3,a4=a5=
10
3
,---------------------(4分)
(2)下面用数学归纳法证明:当n≥5时,有an
10
3

①当n≤5时,由(1)可得an
10
3

②假设n=k时,ak
10
3
(k≥5),
则n=k+1时,ak+1=
k+1
k
+
k+1
k−1
×
1
2
+
k+1
k−2
×
1
22
+…+
k+1
1
×
1
2k−1
---------(6分)
=
k+1
k
+
k+1
2k
k
k−1
+
k
k−2
×
1
2
+…+
k
1
×
1
2k−2

=
k+1
k
+
k+1
2k
ak---------------------------------(8分)
k+1
k
+
10
3
×
k+1
2k

=
k+1
k
×
8
3