早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知x、y、z为实数,且x+y+z=5,xy+yz+zx=3,试求z的最大值与最小值.

题目详情
已知x、y、z为实数,且x+y+z=5,xy+yz+zx=3,试求z的最大值与最小值.
▼优质解答
答案和解析
由x+y+z=5得y=5-x-z代入xy+yz+zx=3得
x(5-x-z)+(5-x-z)z+zx=3
5x-x2-xz+5z-xz-z2+zx-3=0,
整理得
x2+(z-5)x+(z2-5z+3)=0
因为x是实数,那么关于x的一元二次方程的判别式是(z-5)2-4(z2-5z+3)≥0
解这个一元二次不等式,
得-1≤z≤
13
3

故z的最大值为
13
3
,最小值为-1.