早教吧作业答案频道 -->数学-->
设A为三阶实矩阵,且对任意三维向量x,都有(x^T)Ax=0,证明A为反对称矩阵
题目详情
设A为三阶实矩阵,且对任意三维向量x,都有(x^T)Ax=0,证明A为反对称矩阵
▼优质解答
答案和解析
3阶的条件其实没什么用,n阶矩阵结论也成立
注意 x^TAx=0 x^T(A+A^T)x=0
而A+A^T是实对称矩阵
满足x^TBx=0恒成立的对称矩阵B只能是零矩阵(看合同标准型即可)
从而A反对称
注意 x^TAx=0 x^T(A+A^T)x=0
而A+A^T是实对称矩阵
满足x^TBx=0恒成立的对称矩阵B只能是零矩阵(看合同标准型即可)
从而A反对称
看了设A为三阶实矩阵,且对任意三维...的网友还看了以下:
分解因式:(1)4a2b-6ab2+2ab(2)6(a-b)2-12(a-b)(3)x(x+y)2 2020-04-08 …
先化简,再求值 (1)[(x-y)的平方+(x+y)(x-y)]÷2x 其中X=2010,y=20 2020-05-16 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
讨论:关于如何求卷积x(t)*h(-t)的积分表达式?以前信号与系统里学过了x(t)*h(t)的表 2020-06-06 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
导数乘法证明中h是什么意思?(f(x)g(x))'=lim(h→0)[f(x+h)g(x+h)-f 2020-07-22 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
求ln[(1+X)/(1-X)]的导数求ln[(1+X)/(1-X)]导数的思路和答案我知道lnx的 2020-10-31 …
换元法和待定系数法到底是什么因为我想自学高中课程在函数这一章中f(x-1)=X^2求f(x)这类型题 2020-11-24 …