早教吧作业答案频道 -->其他-->
选修4-5(不等式选讲)(Ⅰ)求函数y=3x−5+46−x的最大值;(Ⅱ)已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2)
题目详情
选修4-5(不等式选讲)
(Ⅰ)求函数y=3
+4
的最大值;
(Ⅱ)已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2)
(Ⅰ)求函数y=3
x−5 |
6−x |
(Ⅱ)已知a≠b,求证:a4+6a2b2+b4>4ab(a2+b2)
▼优质解答
答案和解析
(Ⅰ)由题意,由柯西不等式得:(3
+4
)2≤(32+42)(x-5+6-x)=25
∴3
+4
≤5
∴函数y=3
+4
的最大值为5;
(Ⅱ)证明:a4+6a2b2+b4-4ab(a2+b2)=(a2+b2)2-4ab(a2+b2)+4a2b2=(a2+b2-2ab)2=(a-b)4
∵a≠b,∴(a-b)4>0
∴a4+6a2b2+b4>4ab(a2+b2)
x−5 |
6−x |
∴3
x−5 |
6−x |
∴函数y=3
x−5 |
6−x |
(Ⅱ)证明:a4+6a2b2+b4-4ab(a2+b2)=(a2+b2)2-4ab(a2+b2)+4a2b2=(a2+b2-2ab)2=(a-b)4
∵a≠b,∴(a-b)4>0
∴a4+6a2b2+b4>4ab(a2+b2)
看了选修4-5(不等式选讲)(Ⅰ)...的网友还看了以下:
(1)利用基本不等式证明不等式:已知a>3,求证a+4a?3≥7;(2)已知x>0,y>0,且x+ 2020-05-13 …
两道高二关于基本不等式的题(1)已知x、y属于正实数求证:(x+y)(x²+y²)(x³+y³)≥ 2020-05-20 …
已知a+b+c>0,ab+bc+ac>0,abc>0,用反证法求证a>0,b>0,c>0的假设为( 2020-06-05 …
已知函数f(x)的定义域为R,对任意的x,y∈R,都有f(x+y)=f(x)*f(y)当x>0时, 2020-07-22 …
(1)(用综合法证明)若a>0,b>0,求证:(a+b)(1a+1b)≥4(2)(用反证法证明)已 2020-08-01 …
已知a+b+c>0,ab+bc+ac>0,abc>0,用反证法求证a>0,b>0,c>0的假设为( 2020-08-01 …
证明不等式:(1)设a>0,b>0,求证:a5+b5≥a3b2+a2b3(2)已知a≥1,求证:a+ 2020-10-31 …
若非零函数f(X)对任意实数a,b,均有f(a+b)+f(a)×f(b)曾黎,且当x<0是,f(X) 2020-12-07 …
若非零函数f(x)对任意实数a,b均有f(a+b)=f(a)*f(b)成立,且当x<0时,f(x)> 2020-12-07 …
已知函数f(x)=x+xlnx.(1)求函数f(x)的图象在点(1,1)处的切线方程;(2)若k∈Z 2020-12-08 …