早教吧作业答案频道 -->数学-->
(a1^n+b1^n)*(a2^n+b2^n)*(a3^n+b3^n)……(an^n+bn^n)>=(a1a2a3…an+b1b2…bn)^n快
题目详情
(a1^n+b1^n)*(a2^n+b2^n)*(a3^n+b3^n)……(an^n+bn^n)>=(a1a2a3…an+b1b2…bn)^n
快
快
▼优质解答
答案和解析
问题对ai,bi均为正数时才成立.否则,如果ai,bi不全是正数,取 a1=1,b1=-1,n为奇数,这时不等号左边为0;在右边只需取 a2=a3=...=an=1,b2=-1,b3=b4=...=bn=1,那么右边为2^n,0>=2^n,矛盾.下面的证明基于 ai,bi 均为正数.
两边开n次方只需证:
n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]>=a1a2...an+b1b2...bn
由于两边均为正数,所以将不等号两边同时除以左边只需证:
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1.
注意到
a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下(a1^n*a2^n*...*an^n)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下[a1^n/(a1^n+b1^n) * a2^n/(a2^n+b2^n) * ... * an^n/(an^n+bn^n)] (由n元均值不等式)
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
即 a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
同理,b1b2...bn/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[b1^n/(a1^n+b1^n) + b2^n/(a2^n+b2^n) + ... + bn^n/(an^n+bn^n)]
两式相加得到
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[(a1^n+b1^n)/(a1^n+b1^n) + (a2^n+b2^n)/(a2^n+b2^n) + ... + (an^n+bn^n)/(an^n+bn^n)]
=1/n*n
=1
即 (a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1,所以
a1a2...an+b1b2...bn<=n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
从而 (a1a2...an+b1b2...bn)^n<=(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n).
两边开n次方只需证:
n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]>=a1a2...an+b1b2...bn
由于两边均为正数,所以将不等号两边同时除以左边只需证:
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1.
注意到
a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下(a1^n*a2^n*...*an^n)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下[a1^n/(a1^n+b1^n) * a2^n/(a2^n+b2^n) * ... * an^n/(an^n+bn^n)] (由n元均值不等式)
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
即 a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
同理,b1b2...bn/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[b1^n/(a1^n+b1^n) + b2^n/(a2^n+b2^n) + ... + bn^n/(an^n+bn^n)]
两式相加得到
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[(a1^n+b1^n)/(a1^n+b1^n) + (a2^n+b2^n)/(a2^n+b2^n) + ... + (an^n+bn^n)/(an^n+bn^n)]
=1/n*n
=1
即 (a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1,所以
a1a2...an+b1b2...bn<=n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
从而 (a1a2...an+b1b2...bn)^n<=(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n).
看了(a1^n+b1^n)*(a2...的网友还看了以下:
对数列{an},规定{△an}为数列{an}的一阶差分数列,其中△an=an+1-an(n∈N*) 2020-05-13 …
已知数列{an}中,a1=1且点pn(an,an+1)(n∈N+)在直线x-y+1=0上,(1)求 2020-05-13 …
已知数列{an}的通项公式为an=2^(n-1)+1则a1Cn^0+a2Cn^1+a3Cn^2+. 2020-07-09 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
已知数列{an}的通项公式为an=-n+t,数列{bn}的通项公式为bn=3n-3,设cn=an+ 2020-07-09 …
数列{an}与{bn}满足关系:a1=2,a(n+1)=(an^2+1)/2an,bn=(an+1 2020-07-22 …
对于无穷数列{an}与{bn},记A={x|x=an,n∈N*},B={x|x=bn,n∈N*}, 2020-07-22 …
22.已知数列{an}满足:a1=且an=(n≥2n∈N*).(1)求数列{an}的通项公式;(2 2020-07-22 …
怎么分奇偶性求数列的通项公式?an=n,n为奇数,an=2×3∧(n/2-1),n为偶数.我不知道 2020-08-01 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …