早教吧作业答案频道 -->数学-->
(a1^n+b1^n)*(a2^n+b2^n)*(a3^n+b3^n)……(an^n+bn^n)>=(a1a2a3…an+b1b2…bn)^n快
题目详情
(a1^n+b1^n)*(a2^n+b2^n)*(a3^n+b3^n)……(an^n+bn^n)>=(a1a2a3…an+b1b2…bn)^n
快
快
▼优质解答
答案和解析
问题对ai,bi均为正数时才成立.否则,如果ai,bi不全是正数,取 a1=1,b1=-1,n为奇数,这时不等号左边为0;在右边只需取 a2=a3=...=an=1,b2=-1,b3=b4=...=bn=1,那么右边为2^n,0>=2^n,矛盾.下面的证明基于 ai,bi 均为正数.
两边开n次方只需证:
n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]>=a1a2...an+b1b2...bn
由于两边均为正数,所以将不等号两边同时除以左边只需证:
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1.
注意到
a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下(a1^n*a2^n*...*an^n)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下[a1^n/(a1^n+b1^n) * a2^n/(a2^n+b2^n) * ... * an^n/(an^n+bn^n)] (由n元均值不等式)
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
即 a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
同理,b1b2...bn/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[b1^n/(a1^n+b1^n) + b2^n/(a2^n+b2^n) + ... + bn^n/(an^n+bn^n)]
两式相加得到
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[(a1^n+b1^n)/(a1^n+b1^n) + (a2^n+b2^n)/(a2^n+b2^n) + ... + (an^n+bn^n)/(an^n+bn^n)]
=1/n*n
=1
即 (a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1,所以
a1a2...an+b1b2...bn<=n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
从而 (a1a2...an+b1b2...bn)^n<=(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n).
两边开n次方只需证:
n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]>=a1a2...an+b1b2...bn
由于两边均为正数,所以将不等号两边同时除以左边只需证:
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1.
注意到
a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下(a1^n*a2^n*...*an^n)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下[a1^n/(a1^n+b1^n) * a2^n/(a2^n+b2^n) * ... * an^n/(an^n+bn^n)] (由n元均值不等式)
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
即 a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
同理,b1b2...bn/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[b1^n/(a1^n+b1^n) + b2^n/(a2^n+b2^n) + ... + bn^n/(an^n+bn^n)]
两式相加得到
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[(a1^n+b1^n)/(a1^n+b1^n) + (a2^n+b2^n)/(a2^n+b2^n) + ... + (an^n+bn^n)/(an^n+bn^n)]
=1/n*n
=1
即 (a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1,所以
a1a2...an+b1b2...bn<=n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
从而 (a1a2...an+b1b2...bn)^n<=(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n).
看了(a1^n+b1^n)*(a2...的网友还看了以下:
在1和2之间插入n个正数a1,a2,a3,.an使这n+1个数成等比数列,又在1与2之间插入n个正 2020-05-13 …
在1与2之间插入n个正数a1,a2,a3,…,an,使这n+2个数成等比数列;又在1与2间插入n个 2020-05-16 …
已知数列{an}和{bn}满足a1a2a3…an=(2)bn(n∈N*).若{an}为等比数列,且 2020-07-09 …
已知数列{b1}是等比数列⑴若b1=24,q=1/5,求bn.⑵若b3=3,b6=24,求q,b0 2020-07-09 …
若数列bn满足4^b1-1*4^b2-1*4^b3-1*……*4^bn-1=(an+1)^bn若数 2020-07-09 …
bn+2-2bn+1+bn=0,b3=11,前9项和为153,求{bn}通项公式 2020-07-09 …
等比数列{bn}中,b3=a2,b4=a4,求数列{bn}的前n项和Tn 2020-07-09 …
已知等差数列an为递增数列,满足a3的平方=5a1+5a5-25,在等比数列bn中.b3=a2+2 2020-07-09 …
在等比数列{bn}中,b3+b7=20,b1*b9=64,则b1的值是 2020-07-09 …
(a1^n+b1^n)*(a2^n+b2^n)*(a3^n+b3^n)……(an^n+bn^n)>= 2020-10-31 …