早教吧作业答案频道 -->数学-->
(a1^n+b1^n)*(a2^n+b2^n)*(a3^n+b3^n)……(an^n+bn^n)>=(a1a2a3…an+b1b2…bn)^n快
题目详情
(a1^n+b1^n)*(a2^n+b2^n)*(a3^n+b3^n)……(an^n+bn^n)>=(a1a2a3…an+b1b2…bn)^n
快
快
▼优质解答
答案和解析
问题对ai,bi均为正数时才成立.否则,如果ai,bi不全是正数,取 a1=1,b1=-1,n为奇数,这时不等号左边为0;在右边只需取 a2=a3=...=an=1,b2=-1,b3=b4=...=bn=1,那么右边为2^n,0>=2^n,矛盾.下面的证明基于 ai,bi 均为正数.
两边开n次方只需证:
n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]>=a1a2...an+b1b2...bn
由于两边均为正数,所以将不等号两边同时除以左边只需证:
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1.
注意到
a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下(a1^n*a2^n*...*an^n)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下[a1^n/(a1^n+b1^n) * a2^n/(a2^n+b2^n) * ... * an^n/(an^n+bn^n)] (由n元均值不等式)
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
即 a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
同理,b1b2...bn/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[b1^n/(a1^n+b1^n) + b2^n/(a2^n+b2^n) + ... + bn^n/(an^n+bn^n)]
两式相加得到
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[(a1^n+b1^n)/(a1^n+b1^n) + (a2^n+b2^n)/(a2^n+b2^n) + ... + (an^n+bn^n)/(an^n+bn^n)]
=1/n*n
=1
即 (a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1,所以
a1a2...an+b1b2...bn<=n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
从而 (a1a2...an+b1b2...bn)^n<=(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n).
两边开n次方只需证:
n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]>=a1a2...an+b1b2...bn
由于两边均为正数,所以将不等号两边同时除以左边只需证:
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1.
注意到
a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下(a1^n*a2^n*...*an^n)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
=n次根号下[a1^n/(a1^n+b1^n) * a2^n/(a2^n+b2^n) * ... * an^n/(an^n+bn^n)] (由n元均值不等式)
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
即 a1a2...an/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[a1^n/(a1^n+b1^n) + a2^n/(a2^n+b2^n) + ... + an^n/(an^n+bn^n)]
同理,b1b2...bn/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[b1^n/(a1^n+b1^n) + b2^n/(a2^n+b2^n) + ... + bn^n/(an^n+bn^n)]
两式相加得到
(a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
<=1/n*[(a1^n+b1^n)/(a1^n+b1^n) + (a2^n+b2^n)/(a2^n+b2^n) + ... + (an^n+bn^n)/(an^n+bn^n)]
=1/n*n
=1
即 (a1a2...an+b1b2...bn)/n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]<=1,所以
a1a2...an+b1b2...bn<=n次根号下[(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n)]
从而 (a1a2...an+b1b2...bn)^n<=(a1^n+b1^n)(a2^n+b2^n)...(an^n+bn^n).
看了(a1^n+b1^n)*(a2...的网友还看了以下:
在平面直角坐标系中,已知An(n,an)、Bn(n,bn)、Cn(n-1,0)(n∈N*),满足向 2020-06-11 …
数列{an},{bn}中,a1=3,b1=0,当n≥2时an=[2a(n-1)+b(n-1)]/3 2020-07-09 …
已知在递增等差数列{an}中,a1=2,a3是a1和a9的等比中项.(Ⅰ)求数列{an}的通项公式 2020-07-09 …
已知数列{an}和{bn}满足a1a2a3…an=(2)bn(n∈N*).若{an}为等比数列,且 2020-07-09 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
紧急!设数列bn满足b1=1,bn>0(n=2,3.)其前n项乘积Tn=(a^(n-1)bn)^n 2020-07-18 …
bn=1/n,Sn表示{bn}的前n项和,是否存在关于n的整式g(n),使得S1+S2+S3+Sn 2020-07-18 …
对于无穷数列{an}与{bn},记A={x|x=an,n∈N*},B={x|x=bn,n∈N*}, 2020-07-22 …
对数列{an}和{bn},若对任意正整数n,恒有bn≤an,则称数列{bn}是数列{an}的“下界 2020-07-31 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …