早教吧作业答案频道 -->数学-->
数列满足a1=3,a2=7,an=a(n-1)+a(n-2)+a(n-1)a(n-2),则a10=快
题目详情
数列满足a1=3,a2=7,an=a(n-1)+a(n-2)+a(n-1)a(n-2),则a10=
快
快
▼优质解答
答案和解析
a(n) + 1 = a(n-1) + a(n-2) + a(n-1)a(n-2) + 1 = [a(n-1)+1][a(n-2)+1],
b(n) = a(n) + 1,b(1)=a(1)+1=4,b(2)=a(2)+1=7+1=8.
b(n+2)=b(n+1)*b(n),
c(n) = ln[b(n)],
c(n+2) = c(n+1) + c(n),
c(n+2)+xc(n+1) = [1+x][c(n+1)+xc(n)],1 = x(1+x),0 = x^2 + x - 1,x=(5^(1/2)-1)/2.
{c(n+1)+xc(n)}是首项为c(2)+xc(1)=ln[b(2)]+xln[b(1)]=ln[a(2)+1]+xln[a(1)+1]=ln4+xln8=[2 + 3x]ln2,公比为(1+x)的等比数列.
c(n+1)+xc(n)=[2+3x]ln2*(1+x)^(n-1).
x^(n)c(n+1) + x^2*x^(n-1)c(n) = x(2+3x)ln2*[x(1+x)]^(n-1) = x(2+3x)ln2,
d(n) = x^(n-1)c(n),
d(n+1) + x^2d(n) = x(2+3x)ln2,
d(n+1) + y = -x^2[d(n) + y],x(2+3x)ln2=-y(x^2+1),y=-x(2+3x)ln2/(x^2+1).
{d(n)+y}是首项为d(1)+y=c(1)+y=ln[b(1)]+y=ln4+y,公比为-x^2的等比数列.
d(n)+y=[ln4+y](-x^2)^(n-1),
c(n) = d(n)(1+x)^(n-1) = {(ln4+y)(-x^2)^(n-1)-y}(1+x)^(n-1)
=(ln4+y)(-x)^(n-1) - y(1+x)^(n-1),
b(n) = e^[c(n)] = e^{(ln4+y)(-x)^(n-1) - y(1+x)^(n-1)},
a(n) = b(n)-1 = e^{(ln4+y)(-x)^(n-1) - y(1+x)^(n-1)} - 1
a(10) = e^{(ln4+y)(-x)^9 - y(1+x)^9}-1,
y = -x(2+3x)ln2/(x^2+1),
x = [5^(1/2)-1]/2
b(n) = a(n) + 1,b(1)=a(1)+1=4,b(2)=a(2)+1=7+1=8.
b(n+2)=b(n+1)*b(n),
c(n) = ln[b(n)],
c(n+2) = c(n+1) + c(n),
c(n+2)+xc(n+1) = [1+x][c(n+1)+xc(n)],1 = x(1+x),0 = x^2 + x - 1,x=(5^(1/2)-1)/2.
{c(n+1)+xc(n)}是首项为c(2)+xc(1)=ln[b(2)]+xln[b(1)]=ln[a(2)+1]+xln[a(1)+1]=ln4+xln8=[2 + 3x]ln2,公比为(1+x)的等比数列.
c(n+1)+xc(n)=[2+3x]ln2*(1+x)^(n-1).
x^(n)c(n+1) + x^2*x^(n-1)c(n) = x(2+3x)ln2*[x(1+x)]^(n-1) = x(2+3x)ln2,
d(n) = x^(n-1)c(n),
d(n+1) + x^2d(n) = x(2+3x)ln2,
d(n+1) + y = -x^2[d(n) + y],x(2+3x)ln2=-y(x^2+1),y=-x(2+3x)ln2/(x^2+1).
{d(n)+y}是首项为d(1)+y=c(1)+y=ln[b(1)]+y=ln4+y,公比为-x^2的等比数列.
d(n)+y=[ln4+y](-x^2)^(n-1),
c(n) = d(n)(1+x)^(n-1) = {(ln4+y)(-x^2)^(n-1)-y}(1+x)^(n-1)
=(ln4+y)(-x)^(n-1) - y(1+x)^(n-1),
b(n) = e^[c(n)] = e^{(ln4+y)(-x)^(n-1) - y(1+x)^(n-1)},
a(n) = b(n)-1 = e^{(ln4+y)(-x)^(n-1) - y(1+x)^(n-1)} - 1
a(10) = e^{(ln4+y)(-x)^9 - y(1+x)^9}-1,
y = -x(2+3x)ln2/(x^2+1),
x = [5^(1/2)-1]/2
看了数列满足a1=3,a2=7,a...的网友还看了以下:
已知数列An满足A1=1,A2=2,An+2=(1+cos*2 nπ/2)+sin2* nπ/2, 2020-04-05 …
线性代数,最后求所有的r向量设A1,A2,B1,B2都是3维列向量,且A1,A2线性无冠,B1,B 2020-05-13 …
解方程:(1)2分之2x-3-6分之x-5=3分之7-2x(2)0.25分之2x+1-0.5x分之 2020-05-16 …
化简:(a-1)(a+1)(a2+1)(1/3+a)(1/3-a)(1/9+a2)(4+y2)(2 2020-05-22 …
在P^4中,求向量b在基a1,a2,a3,a4下的坐标.设,a1=(1,1,0,1),a2=(2, 2020-05-23 …
设a1=(1,0,1,),a2=(1,1,0,),a3=(0,1,1,),a4=(1,1,1),则 2020-07-09 …
设数列{an}是首项为1的等比数列,若{1/[2an+a(n+1)]}是等差数列,则(1/2a1+ 2020-07-09 …
多项式×+×10=A0+A1(x+1)+A2(x+1)2+A3(x+1)3``````+A9(x+1 2020-10-31 …
数学高考题.对于n∈N*,将n表示为n=a0×2^k+a1×2^k-1+a2×2^k-2+……ak- 2020-11-01 …
已知数列{an}中,a1=2,an=an-1+2n-1(n>=2),求数列{an}的通项公式n>=2 2021-02-09 …