早教吧作业答案频道 -->数学-->
已知k∈R,函数f(x)=lnx-kx.(Ⅰ)若k>0,求函数f(x)的单调区间;(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
题目详情
已知k∈R,函数f(x)=lnx-kx.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
(Ⅰ)若k>0,求函数f(x)的单调区间;
(Ⅱ)若f(x)有两个相异的零点x1,x2,求证:x1•x2>e2.
▼优质解答
答案和解析
(Ⅰ)f′(x)=
(x>0)在(0,
)上f'(x)>0,f(x)单调递增,在(
,+∞)上f'(x)<0,f(x)单调递减;
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
⇔
>
⇔
>
令
=t,则t>1,
>
⇔lnt>
令g(t)=lnt-
(t>1)
g'(t)=
>0,所以g(t)在(1,+∞)上单调递增,
故g(t)>g(1)=0,即lnt>
成立,∴x1x2>e2成立.
| 1-kx |
| x |
| 1 |
| k |
| 1 |
| k |
(Ⅱ)证明:设0<x1<x2,f(x1)=f(x2)=0,
lnx1-kx1=lnx2-kx2=0,
要证x1x2>e2即证lnx1+lnx2>2⇔k(x1+x2)>2⇔k>
| 2 |
| x1+x2 |
| lnx1-lnx2 |
| x1-x2 |
| 2 |
| x1-x2 |
| x2 |
| x1 |
| 2(x2-x1) |
| x1+x2 |
令
| x2 |
| x1 |
| x2 |
| x1 |
| 2(x2-x1) |
| x1+x2 |
| 2(t-1) |
| t+1 |
令g(t)=lnt-
| 2(t-1) |
| t+1 |
g'(t)=
| (t-1)2 |
| t(t+1)2 |
故g(t)>g(1)=0,即lnt>
| 2(t-1) |
| t+1 |
看了已知k∈R,函数f(x)=ln...的网友还看了以下:
已知二次函数f(x)=ax^2+bx+c的导数为f'(x),f'(x)>0.对任意实数x,有f(x 2020-05-17 …
已知3f(x)+2f(x)=x,求f(x)怎么算我自己算了一半因为3f(x)+2f(x)=x3f( 2020-06-03 …
用[x]表示不超过x的最大整数,记{x}=x-[x],其中x∈R,设f(x)=[x]•{x}.用[ 2020-06-04 …
f'(0)=2,则lim(x→0)[f(5x)-f(x)]/x若f(x)在x=0处可导,且f'(0 2020-06-12 …
设f(x)=ln10x,g(x)=x,h(x)=ex10,则当x充分大时有()A.g(x)<h(x 2020-06-18 …
F(x)=x(e^x-1)-ax^2,若当x≥0时f(x)≥0,求a的取值范围?f(xF(x)=x 2020-07-26 …
已知函数f(x)=lnxa+x在x=1处的切线方程为2x-y+b=0.(Ⅰ)求实数a,b的值;(Ⅱ 2020-07-31 …
若函数f(x),g(x)的定义域都是R,则f(x)>g(x)(x∈R)的充要条件是?A.存在一个属 2020-08-02 …
设a>0,函数f(x)=lnx-ax,g(x)=lnx-2(x-1)/(x+1).(1)证明:当x> 2020-10-31 …
我快死了……函数的一般表达式是什么?是不是y=f(x)(x∈A)?f是某个对应关系,那么这个f(x) 2020-11-01 …