早教吧作业答案频道 -->数学-->
设实数x,y,z满足0<x<y<z<π2,证明:π2+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.
题目详情
设实数x,y,z满足0<x<y<z<
,证明:
+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.
π |
2 |
π |
2 |
▼优质解答
答案和解析
证明:由于sin2x+sin2y+sin2z-2sinxcosy-2sinycosz
=
[(sin2x+sin2y)+(sin2y+sin2z)+(sin2z+sin2x)]-2sinxcosy-2sinycosz
≤sin(x+y)cos(x-y)+sin(y+z)cos(y-z)+sin(z+x)cos(z-x)-2sinxcosycos(x-y)-2sinycoszcos(y-z)
=sin(y-x)cos(x-y)+sin(z-y)cos(y-z)+sin(z+x)cos(z-x)
=
sin(2y-2x)+
sin(2z-2y)+sin(z+x)cos(z-x)
=sin(z-x)cos(2y-x-z)+sin(z+x)cos(z-x)
≤sin(z-x)+cos(z-x)≤
<
故
+2sinxcosy+2sinycosz>sin2x+sin2y+sin2z.
=
1 |
2 |
≤sin(x+y)cos(x-y)+sin(y+z)cos(y-z)+sin(z+x)cos(z-x)-2sinxcosycos(x-y)-2sinycoszcos(y-z)
=sin(y-x)cos(x-y)+sin(z-y)cos(y-z)+sin(z+x)cos(z-x)
=
1 |
2 |
1 |
2 |
=sin(z-x)cos(2y-x-z)+sin(z+x)cos(z-x)
≤sin(z-x)+cos(z-x)≤
2 |
π |
2 |
故
π |
2 |
看了设实数x,y,z满足0<x<y...的网友还看了以下:
S J S Z T K D S M G Y C:W A N,Q B N G S N B Y G W 2020-04-06 …
已知x/2=y/7=z/5,则(x+y-z)/x的值为?已知数x、y、z满足关系式(y+z)/x= 2020-06-02 …
设有下面四个命题p1:若复数z满足1z∈R,则z∈R;p2:若复数z满足z2∈R,则z∈R;p3: 2020-07-20 …
复数Z满足│z│=√2,对应点位于复平面内第三象限,z^2的虚部为2.(1)求argz,并写出z的 2020-07-30 …
已知集合S={z||z-1|小于等于3,z属于C},T={z|z=(w+2)i/3=t,w属于S, 2020-08-02 …
已知x、y、z满足2x-y-2z-6=0,已知x、y、z满足2x-y-2z-6=0,x2+y2+z2 2020-10-31 …
设实数x>0,y>0,z>0,a>0,b>0,且x,y,z满足条件x^2+y^2-xy=a^2;x^ 2020-11-01 …
1.已知x,y,z满足方程组x-2y+z=0,7x+4y-5z=0则x:y:z=2.若a>b>0,a 2020-11-01 …
已知非负数x,y,z满足3x+2y+z=5,x+y-z=2,若S=2x+y-z,求-S的最值 2020-12-07 …
同问已知非负数x,y,z满足3x+2y+z=5,x+y-z=2,若S=2x+y-z,求S的最值. 2020-12-07 …