早教吧作业答案频道 -->数学-->
已知方程x^2+y^2-2x-4y+m=0,(1)若此方程表示圆,求m的取值范围;(2)若(1)中的圆与直线x+2y-4=0相交于M,N两,且0M⊥0N(0为坐标原点)求m的值、(3)在(2)的条件下,求以MN为直径的圆的方程
题目详情
已知方程x^2+y^2-2x-4y+m=0,(1)若此方程表示圆,求m的取值范围; (2)若(1)中的圆与直线x+2y-4=0相交于M,N两,且0M⊥0N(0为坐标原点)求m的值、(3)在(2)的条件下,求以MN为直径的圆的方程
▼优质解答
答案和解析
(1)、x^2+y^2-2x-4y+m=0,
——》(x-1)^2+(y-2)^2=5-m>0,
——》m<5;
(2)、设M为(x1,y1),N为(x2,y2),
直线x+2y-4=0,——》x=4-2y,
代入圆的方程,得:(4-2y-1)^2+(y-2)^2=5-m,
整理得:5y^2-16y+(m+8)=0,
——》y1+y2=16/5,y1*y2=(m+8)/5,
M、N在直线x+2y-4=0上,
——》x1=4-2y1、x2=4-2y2,
kom=y1/x1,kon=y2/x2,
OM⊥ON,
——》kom*kon=-1=y1*y2/x1*x2,
——》x1*x2+y1*y2=0,
——》(4-2y1)*(4-2y2)+y1*y2=16-8(y1+y2)+5y1*y2=16-8*16/5+5*(m+8)/5=0,
——》m=8/5;
(3)、m=8/5代入方程得:5y^2-16y+(8/5+8)=0,
解得:y1=12/5,y2=4/5,
——》x1=4-2y1=-4/5,x2=4-2y2=12/5,
即M为(-4/5,12/5),N为(12/5,4/5),
——》MN中点坐标为(4/5,8/5),
以MN为直径的方程圆的方程为:
(x-4/5)^2+(y-8/5)^2=(-4/5-4/5)^2+(12/5-8/5)^2=16/5,
即:5x^2+5y^2-8x-16y=0.
——》(x-1)^2+(y-2)^2=5-m>0,
——》m<5;
(2)、设M为(x1,y1),N为(x2,y2),
直线x+2y-4=0,——》x=4-2y,
代入圆的方程,得:(4-2y-1)^2+(y-2)^2=5-m,
整理得:5y^2-16y+(m+8)=0,
——》y1+y2=16/5,y1*y2=(m+8)/5,
M、N在直线x+2y-4=0上,
——》x1=4-2y1、x2=4-2y2,
kom=y1/x1,kon=y2/x2,
OM⊥ON,
——》kom*kon=-1=y1*y2/x1*x2,
——》x1*x2+y1*y2=0,
——》(4-2y1)*(4-2y2)+y1*y2=16-8(y1+y2)+5y1*y2=16-8*16/5+5*(m+8)/5=0,
——》m=8/5;
(3)、m=8/5代入方程得:5y^2-16y+(8/5+8)=0,
解得:y1=12/5,y2=4/5,
——》x1=4-2y1=-4/5,x2=4-2y2=12/5,
即M为(-4/5,12/5),N为(12/5,4/5),
——》MN中点坐标为(4/5,8/5),
以MN为直径的方程圆的方程为:
(x-4/5)^2+(y-8/5)^2=(-4/5-4/5)^2+(12/5-8/5)^2=16/5,
即:5x^2+5y^2-8x-16y=0.
看了已知方程x^2+y^2-2x-...的网友还看了以下:
在平面直角坐标系中,O为坐标原点,A,B,C三点满足向量OC = 2/3 向量OA + 1/3在平 2020-05-16 …
已知点A(3,根号3),O为坐标原点,点P(x,y)满足:根号3x-y≤0,x-根号3y+2≥0, 2020-05-16 …
已知在矩形ABCD中,AB=4,BC=252,O为BC上一点,BO=72,如图所示,以BC所在直线 2020-06-12 …
在极坐标系下,已知圆O:ρ=cosθ+sinθ和直线l:ρsin(θ-π/4)=√2/2.(1)以 2020-06-14 …
已知在矩形ABCD中,AB=4,BC=252,O为BC上一点,BO=72,如图所示,以BC所在直线 2020-07-19 …
已知圆的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为. 2020-07-31 …
在平面直角坐标系中,O为坐标原点,点A的坐标为(2x+y-3,x-2y),它关于x轴的对称点A1的 2020-08-01 …
在空间直角坐标系O-xyz中O为坐标原点,点A,B在空间直角坐标系O-xyz中O为坐标原点,点A, 2020-08-02 …
在平面直角坐标系中,将一块腰长为22cm的等腰直角三角板ABC如图放置,BC边与x轴重合,∠ACB= 2020-12-25 …
已知圆的参数方程为(为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,圆的极坐标方程为. 2021-02-10 …