早教吧作业答案频道 -->数学-->
设函数f(x)=ax2-xlnx-(2a-1)x+a-1(a∈R)(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.
题目详情
设函数f(x)=ax2-xlnx-(2a-1)x+a-1(a∈R)
(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;
(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.
(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;
(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.
▼优质解答
答案和解析
(1)a=0时,f(x)=-xlnx+x-1,
f′(x)=-lnx,∴f′(e)=-lne=-1,
又f(e)=-elne+e-1=-1,
∴函数f(x)在点P(e,f(e))处的切线方程为:y+1=-1×(x-e),即x+y+1-e=0;
(2)由f(x)≥0,得ax2-xlnx-(2a-1)x+a-1≥0,
f′(x)=2ax-2a-lnx,令g(x)=2ax-2a-lnx,
则g′(x)=2a-
=
,
∵f′(1)=0,
∴只要g′(x)≥0,就有g(0)≥0,且g(x)单调递增,即f(x)≥f(1)=0.
∴2ax-1≥0,a≥
.
∴实数a的取值范围是[
,+∞).
f′(x)=-lnx,∴f′(e)=-lne=-1,
又f(e)=-elne+e-1=-1,
∴函数f(x)在点P(e,f(e))处的切线方程为:y+1=-1×(x-e),即x+y+1-e=0;
(2)由f(x)≥0,得ax2-xlnx-(2a-1)x+a-1≥0,
f′(x)=2ax-2a-lnx,令g(x)=2ax-2a-lnx,
则g′(x)=2a-
1 |
x |
2ax-1 |
x |
∵f′(1)=0,
∴只要g′(x)≥0,就有g(0)≥0,且g(x)单调递增,即f(x)≥f(1)=0.
∴2ax-1≥0,a≥
1 |
2 |
∴实数a的取值范围是[
1 |
2 |
看了设函数f(x)=ax2-xln...的网友还看了以下:
解方程:1、x除三分之二=2.5 2、5x减1.5x乘8=0 3、5x减x=0.36 4、八分之( 2020-05-16 …
已知函数f(x)=2^x+a×2^(-x)是定义域为R的奇函数(1)求实数a的值(2)证明f(x) 2020-06-09 …
设f(x)可导,F(x)=f(x)(1+|x|),要使F(x)在x=0处可导,则必有()设f(x) 2020-06-11 …
解不等式(x-3)(x+4)大于0,根据乘法法则,原不等式可能化成不等式组:x-3大于0,x+4大 2020-06-27 …
设函数f(x)={1,x>0,g(x)=x^2f(x-1),则函数g(x)的递减区间?答案是[0, 2020-07-04 …
导数题一道已知函数f(x)=-x^3+ax^2-4(1)若f(x)在x=4/3处取得极值求实数a的 2020-07-26 …
f(x)在x=0的邻域有二阶连续导数,f'(0)=f''(0)=0,则在x=0处,f(x)f(x) 2020-07-29 …
曲线y=f(x)≥0(x≥0)围成一以[0,x]为底的曲边梯形,其面积与f(x)的4次幂...曲线y 2020-10-30 …
已知函数:f(x)=x-(a+1)lnx-ax(a∈R),g(x)=12x2+ex-xex(1)当x 2020-10-31 …
[ln(x+e^x)]/x=lim(x->0)(1+e^x)/(x+e^x)怎么得到的?原题limx 2020-11-01 …