早教吧作业答案频道 -->数学-->
设函数f(x)=ax2-xlnx-(2a-1)x+a-1(a∈R)(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.
题目详情
设函数f(x)=ax2-xlnx-(2a-1)x+a-1(a∈R)
(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;
(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.
(1)当a=0时,求函数f(x)在点P(e,f(e))处的切线方程;
(2)对任意的x∈[1,+∞),函数f(x)≥0恒成立,求实数a的取值范围.
▼优质解答
答案和解析
(1)a=0时,f(x)=-xlnx+x-1,
f′(x)=-lnx,∴f′(e)=-lne=-1,
又f(e)=-elne+e-1=-1,
∴函数f(x)在点P(e,f(e))处的切线方程为:y+1=-1×(x-e),即x+y+1-e=0;
(2)由f(x)≥0,得ax2-xlnx-(2a-1)x+a-1≥0,
f′(x)=2ax-2a-lnx,令g(x)=2ax-2a-lnx,
则g′(x)=2a-
=
,
∵f′(1)=0,
∴只要g′(x)≥0,就有g(0)≥0,且g(x)单调递增,即f(x)≥f(1)=0.
∴2ax-1≥0,a≥
.
∴实数a的取值范围是[
,+∞).
f′(x)=-lnx,∴f′(e)=-lne=-1,
又f(e)=-elne+e-1=-1,
∴函数f(x)在点P(e,f(e))处的切线方程为:y+1=-1×(x-e),即x+y+1-e=0;
(2)由f(x)≥0,得ax2-xlnx-(2a-1)x+a-1≥0,
f′(x)=2ax-2a-lnx,令g(x)=2ax-2a-lnx,
则g′(x)=2a-
| 1 |
| x |
| 2ax-1 |
| x |
∵f′(1)=0,
∴只要g′(x)≥0,就有g(0)≥0,且g(x)单调递增,即f(x)≥f(1)=0.
∴2ax-1≥0,a≥
| 1 |
| 2 |
∴实数a的取值范围是[
| 1 |
| 2 |
看了设函数f(x)=ax2-xln...的网友还看了以下:
函数在0到1的闭区间内二阶导数大于0选择:a.f'(1)>f'(0)>f(1)—f(0)b.f'( 2020-05-16 …
设f(x)是定义在R上的奇函数,切对任意的x∈R都有f(x+1)=-f(x)则下列等式中不成立的是 2020-05-20 …
已知函数f(x-1)的图像与函数g(x)的图像关于直线y=x对称,且g(1)=2则:A,f(1)= 2020-06-27 …
已知定义在(1,-1)上的奇函数f(x),在定义域上为减函数,且f(1-a)+f(1-2a)>0, 2020-06-27 …
一次函数,1.f(x)=2x+a,f(1)=4,求a的值2.设y=f(x)为一次函数,已知f(2) 2020-07-09 …
9.3的a次方=4的b次方=36,问2/a+1/b怎么求出来的(写出过程)10.已知函数f(x)= 2020-07-15 …
设f(x)在0,1上满足f''(x)>0,则必有A.f'(1)>f'(0)>f(1)-f(0)B. 2020-07-26 …
设有双射函数f:X->Y,A和B是Y的任意子集,证明:f^-1(A∩B)=f^-1(A)∩f^-1 2020-07-29 …
时间很赶,1.设函数y=x^2-3|x-1|-1的图像与x轴的焦点个数有()A.1个B.2个C.3个 2020-11-10 …
设函数f(x)={2^xx>0,x+1x小于等于0.若f(a)+f(1)=0,则实数a的值等于?1设 2020-12-08 …