早教吧作业答案频道 -->数学-->
f(x)在无穷区间(x0,+∞)内可导,且lim(x→+∞)f'(x)=0,证明:lim(x→+∞)(f(x)/x)=0
题目详情
f(x)在无穷区间(x0,+∞)内可导,且lim(x→+∞)f'(x)=0,证明:lim(x→+∞)(f(x)/x)=0
▼优质解答
答案和解析
由洛比达法则直接可得
lim(x->+∞) f(x)/x=lim(x->+∞) f'(x)/1
=lim(x->+∞) f'(x) =0
如果不知道洛比达法则,则可用中值定理来做
f'(x)->0,x->+∞,∴对任意ε>0,存在A使得
x>A时,有|f'(x)|A,存在ξ∈(A,x)
使得|(f(x)-f(A))/(x-A)|=|f'(ξ)|
lim(x->+∞) f(x)/x=lim(x->+∞) f'(x)/1
=lim(x->+∞) f'(x) =0
如果不知道洛比达法则,则可用中值定理来做
f'(x)->0,x->+∞,∴对任意ε>0,存在A使得
x>A时,有|f'(x)|A,存在ξ∈(A,x)
使得|(f(x)-f(A))/(x-A)|=|f'(ξ)|
看了f(x)在无穷区间(x0,+∞...的网友还看了以下:
一道简单的二阶导数和一道简单的不定积分1,设f"(x)存在,证明lim(h->0)[f(x0+h) 2020-05-13 …
证明lim(h→0)[f(x0+h)+f(x0-h)-2f(x0)]/h^2=f’’(x0)已知f 2020-05-17 …
若f′(x0)=0,f〃(x0)=0,则函数y=f(x)在点x=x0处()A.一定有最大值B.一定 2020-06-04 …
高数难题判断正误1)f(x0)是f(x)的极大值f(x0)≥f(x),在x0某临域内(2)f(x0 2020-06-19 …
若在定义域内存在实数x0,使得f(x0+1)=f(x0)+f(1)成立,则称函数有“飘移点”x0. 2020-07-20 …
已知函数f(x)=ex+(a+1)x(其中e为自然对数的底数)(1)设过点(0,0)的直线l与曲线 2020-07-30 …
y=f(x)五阶可导,f‘(x0)=f‘‘(x0)=f‘‘‘(x0)=f‘‘‘‘(x0)=0,f‘ 2020-07-31 …
证明题:如果y=f(x)在x0处可导,那么lim(h->0)[f(x0+h)-f(x0-h)]/2 2020-08-01 …
已知函数f(x)=klnx,g(x)=ex.(1)若函数φ(x)=f(x)+x-2x,求φ(x)的 2020-08-02 …
已知函数f(x)=ex-12x2,设l为曲线y=f(x)在点P(x0,f(x0))处的切线,其中x0 2020-10-31 …