早教吧作业答案频道 -->数学-->
正方形ABCD中,O为对角线AC的中点,P为AC上一点,连接BP,过点P作BP⊥PE,PE交直线CD于E.(1)当点P在AO上时,求证:PC-PA=根号2CE(2)当点P在OC上时,猜想PC、PA、CE之间满足的关系,并证明你的猜想.没有省
题目详情
正方形ABCD中,O为对角线AC的中点,P为AC上一点,连接BP,过点P作BP⊥PE,PE交直线CD于E.
(1)当点P在AO上时,求证:PC-PA=根号2CE
(2)当点P在OC上时,猜想PC、PA、CE之间满足的关系,并证明你的猜想.
没有省略的地方.
知识点要十九章四边形的知识解答……
(1)当点P在AO上时,求证:PC-PA=根号2CE
(2)当点P在OC上时,猜想PC、PA、CE之间满足的关系,并证明你的猜想.
没有省略的地方.
知识点要十九章四边形的知识解答……
▼优质解答
答案和解析
第一个问题:
延长EP交DA的延长线于F,过E作EG⊥CE交AC于G.
∵ABCD是正方形,∴∠BAP=∠ECG=45°,又EG⊥EC,∴∠CGE=45°、GC=√2CE.
∵ABCD是正方形,∴BC⊥EC、∠ECP=∠BCP=45°.
∵BC⊥EC、BP⊥EP,∴B、C、E、P共圆,又∠ECP=∠BCP,∴EP=BP.
∵∠CGE=45°,∴∠EGP=180°-∠CGE=135°.
∵∠BAP=45°、∠EGP=135°,∴∠BAP+∠EGP=180°,又BP=EP,
∴△ABP的外接圆、△EGP的外接圆是等圆.
∵ABCD是正方形,∴AF⊥AB、AB∥EC,∴AF⊥EC,又EG⊥EC,∴AF∥GE,
∴∠AFP=∠GEP.
∵BA⊥AF、BP⊥PF,∴A、F、B、P共圆,∴∠AFP=∠ABP,而∠AFP=∠GEP,
∴∠ABP=∠GEP,又△ABP的外接圆、△EGP的外接圆是等圆,∴PA=PG.
显然有:PC-PG=GC,而PG=PA、GC=√2CE,∴PC-PA=√2CE.
第二个问题:PA-PC=√2CE.
[证明]
延长EP交AD于M,过E作EN⊥CE交AC的延长线于N.
∵ABCD是正方形,∴∠ACD=45°,∴∠ECN=45°,又EN⊥CE,∴∠N=45°、CN=√2CE.
∵ABCD是正方形,∴BC⊥EC、∠ECP=∠BCP=45°.
∵BC⊥EC、BP⊥EP,∴B、C、E、P共圆,又∠ECP=∠BCP,∴EP=BP.
∵ABCD是正方形,∴∠BAP=45°.
∵∠BAP=∠ENP=45°、BP=EP,∴△ABP的外接圆、△NEP的外接圆是等圆.
∵ABCD是正方形,∴AM⊥BA,又PM⊥PB,∴A、B、P、M共圆,∴∠DMP=∠ABP.
∵ABCD是正方形,∴MD⊥CE,又EN⊥CE,∴MD∥EN,∴∠DMP+∠NEP=180°,
∴∠ABP+∠NEP=180°,又△ABP的外接圆、△NEP的外接圆是等圆,∴PA=NP.
显然有:NP=PC+CN,∴NP-PC=CN,又NP=PA、CN=√2CE,∴PA-PC=√2CE.
延长EP交DA的延长线于F,过E作EG⊥CE交AC于G.
∵ABCD是正方形,∴∠BAP=∠ECG=45°,又EG⊥EC,∴∠CGE=45°、GC=√2CE.
∵ABCD是正方形,∴BC⊥EC、∠ECP=∠BCP=45°.
∵BC⊥EC、BP⊥EP,∴B、C、E、P共圆,又∠ECP=∠BCP,∴EP=BP.
∵∠CGE=45°,∴∠EGP=180°-∠CGE=135°.
∵∠BAP=45°、∠EGP=135°,∴∠BAP+∠EGP=180°,又BP=EP,
∴△ABP的外接圆、△EGP的外接圆是等圆.
∵ABCD是正方形,∴AF⊥AB、AB∥EC,∴AF⊥EC,又EG⊥EC,∴AF∥GE,
∴∠AFP=∠GEP.
∵BA⊥AF、BP⊥PF,∴A、F、B、P共圆,∴∠AFP=∠ABP,而∠AFP=∠GEP,
∴∠ABP=∠GEP,又△ABP的外接圆、△EGP的外接圆是等圆,∴PA=PG.
显然有:PC-PG=GC,而PG=PA、GC=√2CE,∴PC-PA=√2CE.
第二个问题:PA-PC=√2CE.
[证明]
延长EP交AD于M,过E作EN⊥CE交AC的延长线于N.
∵ABCD是正方形,∴∠ACD=45°,∴∠ECN=45°,又EN⊥CE,∴∠N=45°、CN=√2CE.
∵ABCD是正方形,∴BC⊥EC、∠ECP=∠BCP=45°.
∵BC⊥EC、BP⊥EP,∴B、C、E、P共圆,又∠ECP=∠BCP,∴EP=BP.
∵ABCD是正方形,∴∠BAP=45°.
∵∠BAP=∠ENP=45°、BP=EP,∴△ABP的外接圆、△NEP的外接圆是等圆.
∵ABCD是正方形,∴AM⊥BA,又PM⊥PB,∴A、B、P、M共圆,∴∠DMP=∠ABP.
∵ABCD是正方形,∴MD⊥CE,又EN⊥CE,∴MD∥EN,∴∠DMP+∠NEP=180°,
∴∠ABP+∠NEP=180°,又△ABP的外接圆、△NEP的外接圆是等圆,∴PA=NP.
显然有:NP=PC+CN,∴NP-PC=CN,又NP=PA、CN=√2CE,∴PA-PC=√2CE.
看了 正方形ABCD中,O为对角线...的网友还看了以下:
1.根号4又9分之42.根号π分之s3.根号45分之p的二次方(p>0)4.根号25的三次方分之8 2020-05-21 …
(1/2)已知抛物线C的准线为X=4分之P(P>0),顶点在原点,抛物线C与直线l:y=x1相交所 2020-07-02 …
概率论题P(A)=0.3,P(B=0.4,P(AB-)=0.2,则P(A-并B)=?,A,B中至少 2020-07-08 …
化简下列二次根式根号π分之s(π是圆周率)根号45分之p的平方(p>0)根号n的平方分之20m(n 2020-07-30 …
点A在半径3的圆O内.OA=根号3.P为圆O上一点,当∠OPA取最大值时,PA的长等于A.3/2B 2020-08-01 …
正方形ABCD中,O为对角线AC的中点,P为AC上一点,连接BP,过点P作BP⊥PE,PE交直线C 2020-08-03 …
都是多选喔.1.是非标志的标准差是()A.;根号下p+qB.;根号下p*qC.;根号下p-qD.;根 2020-11-18 …
己知P为锐二面角α-l-β张口内的一点,P点到平面α、β及棱l的距离之比为1:根号2:2,则此二面角 2020-12-21 …
初中数学推论题请由公式S=根号下{1/4[a²乘b²-(a²+b²- 2020-12-23 …
初二有关平方根的两道题1.已知y=根号x-2+根号2-x+3,求y的x次方的平方根2.已知p大于1小 2020-12-31 …