早教吧作业答案频道 -->其他-->
如图在四边形ABCD中,AC交BD于点O,点E、点F分别是OA、OC的中点,(1)如果AD∥BC,AD=BC.观察猜想DF与BE之间的关系,并证明你的猜想;(2)如果AB=7,BE=4.求线段BO的取值范围.
题目详情

(1)如果AD∥BC,AD=BC.观察猜想DF与BE之间的关系,并证明你的猜想;
(2)如果AB=7,BE=4.求线段BO的取值范围.

▼优质解答
答案和解析
(1)猜想:平行且相等
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∴BO=DO,AO=CO,
∵点E、点F分别是OA、OC的中点,
∴OE=OF,
∵在△DOF和△BOE中,
,
∴△DOF≌△BOE(SAS),
∴DF=BE,∠FDO=∠EBO,
∴DF∥BE,
即DF与BE之间的关系为平行且相等;
(2)在△ABE中,∵AB=7,BE=4,
∴3<AE<11,
∵AO<AB,
∴6<2AE=AO<7,
∴6<AO<7,
在△ABO中,
1<OB<13,
在△BEO中,OB<4,即1<OB<4.
DO=BO DO=BO DO=BO∠BOE=∠DOF ∠BOE=∠DOF ∠BOE=∠DOFOF=OE OF=OE OF=OE ,
∴△DOF≌△BOE(SAS),
∴DF=BE,∠FDO=∠EBO,
∴DF∥BE,
即DF与BE之间的关系为平行且相等;
(2)在△ABE中,∵AB=7,BE=4,
∴3<AE<11,
∵AO<AB,
∴6<2AE=AO<7,
∴6<AO<7,
在△ABO中,
1<OB<13,
在△BEO中,OB<4,即1<OB<4.
∵AD∥BC,AD=BC,
∴四边形ABCD是平行四边形,
∴BO=DO,AO=CO,
∵点E、点F分别是OA、OC的中点,
∴OE=OF,
∵在△DOF和△BOE中,
|
∴△DOF≌△BOE(SAS),
∴DF=BE,∠FDO=∠EBO,
∴DF∥BE,
即DF与BE之间的关系为平行且相等;

(2)在△ABE中,∵AB=7,BE=4,
∴3<AE<11,
∵AO<AB,
∴6<2AE=AO<7,
∴6<AO<7,
在△ABO中,
1<OB<13,
在△BEO中,OB<4,即1<OB<4.
|
DO=BO |
∠BOE=∠DOF |
OF=OE |
DO=BO |
∠BOE=∠DOF |
OF=OE |
DO=BO |
∠BOE=∠DOF |
OF=OE |
∴△DOF≌△BOE(SAS),
∴DF=BE,∠FDO=∠EBO,
∴DF∥BE,
即DF与BE之间的关系为平行且相等;

(2)在△ABE中,∵AB=7,BE=4,
∴3<AE<11,
∵AO<AB,
∴6<2AE=AO<7,
∴6<AO<7,
在△ABO中,
1<OB<13,
在△BEO中,OB<4,即1<OB<4.
看了 如图在四边形ABCD中,AC...的网友还看了以下:
一道数学题,如图,已知平行四边形ABCD中,对角线AC、BD分别交于点O,过O点的直线E、F,与A 2020-04-06 …
如图,矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB,CD的延长线分别交于E,F。( 2020-04-09 …
如图①,四边形ABCD是平行四边形,对角线AC,BD相交于点O,过点O做直线EF分别交AD,BC于 2020-05-15 …
如图,在棱长为a的正方体oabc-o'a'b'c'中,E,F分别是棱AB,BC上的动点,且AE=B 2020-05-16 …
已知平行四边形ABCD对角线的交点为O,点E,F分别在边AB,CD上,分别沿DE,BF折叠四边形A 2020-05-16 …
如图,AB是⊙O的直径,点P是⊙O上的动点(P与A,B不重合),连接AP,PB,过点O分别作OE⊥ 2020-05-23 …
同阶无穷小量的表示方法?急!还有f(x)=O(g(x))是什么意思?老师说f(x)=h(x)g(x 2020-06-05 …
在三角形ABC中,AB=AC,BO,CO分别为角ABC,角AB的平分线,交点为O,过O作,E,F( 2020-06-06 …
F/OB/O代表什么?MIZUHO银行水单上的DETAIS一栏上的F/O或B/O分别是哪个单词的简 2020-06-12 …
已知:如图,AB=DC,AD=BC,O是DB的中点,过O点的直线分别交DA和BC的延长线于E,F. 2020-06-27 …