早教吧作业答案频道 -->其他-->
已知,如图,△ABC内接于⊙O,AB=AC,∠BAC=36°,AB、AC的中垂线分别交⊙O于点E、F,证明:五边形AEBCF是⊙O的内接正五边形.
题目详情

▼优质解答
答案和解析
证明:连接BF,CE,
∵AB=AC,
∴∠ABC=∠ACB,
又∵∠BAC=36°,
∴∠ABC=∠ACB=72°.
又∵AB、AC的中垂线分别交⊙O于点E、F,
∴AF=CF,AE=BE,
∴∠BAC=∠BCE=∠ACE=∠ABF=∠FBC=36°,
∴
=
=
=
=
,
∴AE=AF=BE=BC=FC,
∴∠EAF=∠AFC=∠FCB=∠CBE=∠BEA.
∴五边形AEBCD为正五边形.

∵AB=AC,
∴∠ABC=∠ACB,
又∵∠BAC=36°,
∴∠ABC=∠ACB=72°.
又∵AB、AC的中垂线分别交⊙O于点E、F,
∴AF=CF,AE=BE,
∴∠BAC=∠BCE=∠ACE=∠ABF=∠FBC=36°,
∴
![]() |
AE |
![]() |
AF |
![]() |
BE |
![]() |
BC |
![]() |
FC |
∴AE=AF=BE=BC=FC,
∴∠EAF=∠AFC=∠FCB=∠CBE=∠BEA.
∴五边形AEBCD为正五边形.
看了 已知,如图,△ABC内接于⊙...的网友还看了以下:
1.正方形ABCD,E为BD上一点,连接AE并延长交CD于点F,交BC延长线于G,求证AE²=EF 2020-04-27 …
如图;以DE为轴,折叠等边△ABC,顶点A正好落在BC边上F点,求证;△DBF ∽△FCE如图;以 2020-05-13 …
2道几何题已知:P是正方形ABCD对角线BD上一点.PE垂直DC.PF垂直BC.E.F分别为垂足. 2020-05-13 …
如图,在正方形ABCD中,△PBC、△QCD是两个正三角形……如图,在正方形ABCD中,△PBC、 2020-05-16 …
如图,已知正方形ABCD,E为对角线AC上一动点,连BE,EG,GE垂直BE,交CD于G,连BG交 2020-06-15 …
设a是f(z)的孤立奇点,证明;若f(z)为奇函数,则Res[f(z),a]=Res[f(z),- 2020-06-26 …
已知f(x)=lg(1-x/1+x),a,b∈(-1,1)求证f(a)+f(b)=f[(a+b)/ 2020-07-09 …
不动点的基本问题设函数f(x)在R上定义,把满足f(x*)=x*的点称为f(x)的不动点.证明:若 2020-07-30 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
f(x+y)=f(x)+f(y),证明f(x)是正比例函数已知函数f(x)定义域为[-1,1],若 2020-08-03 …