早教吧作业答案频道 -->数学-->
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.(1)试探索OE与OF之间的数量关系.(2)当点O运动到何处时,四边形AECF
题目详情
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.

(1)试探索OE与OF之间的数量关系.
(2)当点O运动到何处时,四边形AECF是矩形,并给出说理过程.
(3)在(2)的前提下,如果四边形AECF是正方形,那么△ABC将是什么三角形呢?请说明理由.

(1)试探索OE与OF之间的数量关系.
(2)当点O运动到何处时,四边形AECF是矩形,并给出说理过程.
(3)在(2)的前提下,如果四边形AECF是正方形,那么△ABC将是什么三角形呢?请说明理由.
▼优质解答
答案和解析
(1)∵MN∥BC,
∴∠OEC=∠ECB,∠OFC=∠FCD.
又∵CE平分∠ACB,FC平分∠ACD.
∴∠ECB=∠OCE,∠OCF=∠FCD,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴EO=OC,FO=OC,
∴EO=FO;
(2)由(1)知,OE=OC=OF,
当OC=OA,即点O为AC的中点时,
∴OE=OC=OF=OA,
∴四边形AECF是平行四边形,AC=EF,
∴这时四边形AECF是矩形;
∴当点O运动到AC中点时,
四边形AECF是矩形,
(3)由正方形AECF可知,AC⊥EF,
又∵EF∥BC,
∴∠ACB=90°,
∴△ABC是∠ACB=90°的直角三角形.
(1)∵MN∥BC,∴∠OEC=∠ECB,∠OFC=∠FCD.
又∵CE平分∠ACB,FC平分∠ACD.
∴∠ECB=∠OCE,∠OCF=∠FCD,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴EO=OC,FO=OC,
∴EO=FO;
(2)由(1)知,OE=OC=OF,
当OC=OA,即点O为AC的中点时,
∴OE=OC=OF=OA,
∴四边形AECF是平行四边形,AC=EF,
∴这时四边形AECF是矩形;
∴当点O运动到AC中点时,
四边形AECF是矩形,
(3)由正方形AECF可知,AC⊥EF,
又∵EF∥BC,
∴∠ACB=90°,
∴△ABC是∠ACB=90°的直角三角形.
看了 如图,△ABC中,点O是AC...的网友还看了以下:
有这样的一道题目:“已知,一次函数y=kx+b的图象经过点A(o,&),B(-1,#),则△AOB 2020-04-08 …
如图,o是边长为4的正方形ABCD的对称中心,过O作OM⊥ON交正方形的边分别于M,N,求四边形O 2020-05-17 …
三角形ABC中,点O是AC边上一动点,过点O作直线MN//BC,设MN交角BCA的平分线CE于E, 2020-06-07 …
如图,在△ABC中,分别以AB,AC为边作等边△ABE,等边△ACD,BD与CE相交于点O.如果要 2020-06-27 …
已知2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),A的一个内角的度数是B的一个内角的度数 2020-07-01 …
(2014•吉林二模)在△ABC中,a,b,c分别为内角A,B,C所对的边,b=c,且满足sinB 2020-07-20 …
sinB=角B的对边比斜边和cosA=角A的邻边比斜边字母比是多少sinB=角B的对边比斜边和co 2020-07-30 …
几何三角形如已知三角形的对边A为3临边B为4时怎么算出临边与斜边的夹角度数是直角三角形A边是对边为 2020-07-30 …
已知圆O是边长为2的内切圆,MN为圆O的任意一条直径,点P是正方形边上的动点,则向量PM和向量PN 2020-08-01 …
大气臭氧层的反应是:O+O3=2O2△H,该反应的能量变化如图所示,下列叙述中,正确的是()A.O+ 2020-10-31 …