早教吧作业答案频道 -->其他-->
(2012•常德)已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON.(当P在线段BC上时,如图1:当P在BC的
题目详情
(2012•常德)已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON.(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)
(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;
(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.

(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;
(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.

▼优质解答
答案和解析
(1)证明:如图1,
∵四边形ABCD为正方形,
∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB,
∵DP⊥CN,
∴∠CMD=∠DOC=90°,
∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°,
∴∠CPD=∠CNB,
∵DC∥AB,
∴∠DCN=∠CNB=∠CPD,
∵在△DCP和△CBN中
,
∴△DCP≌△CBN(AAS),
∴CP=BN,
∵在△OBN和△OCP中
,
∴△OBN≌△OCP(SAS),
∴ON=OP,∠BON=∠COP,
∴∠BON+∠BOP=∠COP+∠BOP,
即∠NOP=∠BOC=90°,
∴ON⊥OP,
即ON=OP,ON⊥OP.
(2)∵AB=4,四边形ABCD是正方形,
∴O到BC边的距离是2,
图1中,S四边形OPBN=S△OBN+S△BOP,
=
×(4-x)×2+
×x×2,
=4(0<x<4),
图2中,S四边形OBNP=S△POB+S△PBN
=
×x×2+
×(x-4)×x
=
x2-x(x>4),
即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:
∵四边形ABCD为正方形,
∴OC=OB,DC=BC,∠DCB=∠CBA=90°,∠OCB=∠OBA=45°,∠DOC=90°,DC∥AB,
∵DP⊥CN,
∴∠CMD=∠DOC=90°,
∴∠BCN+∠CPD=90°,∠PCN+∠DCN=90°,
∴∠CPD=∠CNB,
∵DC∥AB,
∴∠DCN=∠CNB=∠CPD,
∵在△DCP和△CBN中
|
∴△DCP≌△CBN(AAS),
∴CP=BN,
∵在△OBN和△OCP中
|
∴△OBN≌△OCP(SAS),
∴ON=OP,∠BON=∠COP,
∴∠BON+∠BOP=∠COP+∠BOP,
即∠NOP=∠BOC=90°,
∴ON⊥OP,
即ON=OP,ON⊥OP.
(2)∵AB=4,四边形ABCD是正方形,
∴O到BC边的距离是2,
图1中,S四边形OPBN=S△OBN+S△BOP,
=
1 |
2 |
1 |
2 |
=4(0<x<4),
图2中,S四边形OBNP=S△POB+S△PBN
=
1 |
2 |
1 |
2 |
=
1 |
2 |
即以O、P、B、N为顶点的四边形的面积y与x的函数关系是:
|
看了 (2012•常德)已知四边形...的网友还看了以下:
6.设A与B互为对立事件,且P(A)>0,P(B)>0,则下列各式中错误的是( )A. p(a补| 2020-05-16 …
设A,B为对立事件,0<P(B)<1,则下列概率值为1的是()A.P(.A|.B)B.P(B|A) 2020-07-19 …
设A、B、C为事件,P(ABC)>0,如果P(AB|C)=P(A|C)P(B|C),则()A.P( 2020-07-20 …
命题p:∅={∅};命题q:若A={1,2},B={x|x⊆A},则A∈B.下列关于p、q的真假性 2020-08-01 …
由下列命题构成的“p或q”,“p且q”形式的复合命题均为真命题的是()A.p:a∈{a,b,c}, 2020-08-01 …
由下列命题构成的复合命题中,“p或q”为真,“p且q”为假,“非p”为真的是()A.p:5是偶数, 2020-08-01 …
设A,B是两个随机事件,且0<P(A)<1,P(B)>0,P(B|A)=P(B|.A),则必有()A 2020-11-01 …
设A,B为两个事件,且A⊂B,则下列选项必然正确的是()A.P(A∪B)=P(A)B.P(BA)=P 2021-01-01 …
设A,B为任意两个事件且A⊂B,P(B)>0,则下列选项必然成立的是()A.P(A)<P(A|B)B 2021-01-01 …
(2004•福建)命题p:若a、b∈R,则|a|+|b|>1是|a+b|>1的充分而不必要条件;命题 2021-01-13 …