早教吧作业答案频道 -->数学-->
(2014•温州)如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)若CD=2,求DF的长.
题目详情

(1)求∠F的度数;
(2)若CD=2,求DF的长.
▼优质解答
答案和解析
(1)∵△ABC是等边三角形,
∴∠B=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°-∠EDC=30°;
(2)∵∠ACB=60°,∠EDC=60°,
∴△EDC是等边三角形.
∴ED=DC=2,
∵∠DEF=90°,∠F=30°,
∴DF=2DE=4.
∴∠B=60°,
∵DE∥AB,
∴∠EDC=∠B=60°,
∵EF⊥DE,
∴∠DEF=90°,
∴∠F=90°-∠EDC=30°;
(2)∵∠ACB=60°,∠EDC=60°,
∴△EDC是等边三角形.
∴ED=DC=2,
∵∠DEF=90°,∠F=30°,
∴DF=2DE=4.
看了 (2014•温州)如图,在等...的网友还看了以下:
f(x)+f(y)=2f[(x+y)/2]f[(x-y)/2],f(0)不等于,且存在非零常数c, 2020-05-14 …
设f(z),g(z)都在简单闭曲线c上及c内解析,且在c上f(z)=g(z),证明:在c内也有f( 2020-05-15 …
f(x)在(a,b)可导,c∈(a,b),当x≠c时f"(x)>0,f"(c)=0,试证y如题,f 2020-05-16 …
数学分析题》》关于连续的设f:D->实数,|f|:D->实数因为|f|(x)=|f(x)|举一个例 2020-06-03 …
设f(z),g(z)都在简单闭曲线c上及c内解析,且在c上f(z)=g(z),证明:在c内也有f( 2020-06-18 …
设函数f(x)在x=0处连续,且limh→0f(h2)h2=1,则()A.f(0)=0且f−′(0 2020-07-20 …
f(x)在[a,b]连续,在(a,b)二阶连续可导,证明存在c,使f(a)+f(b)-2f((a+ 2020-07-25 …
高数!求详解设f(x)在[0,1]上连续,在(0,1)内二阶可导,且f(0)=f(1)=0,证明: 2020-07-29 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …