早教吧作业答案频道 -->数学-->
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.
题目详情
已知定义域为R的函数f(x)满足f(f(x)-x2+x)=f(x)-x2+x.
(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.
(I)若f(2)=3,求f(1);又若f(0)=a,求f(a);
(Ⅱ)设有且仅有一个实数x0,使得f(x0)=x0,求函数f(x)的解析表达式.
▼优质解答
答案和解析
(I)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x
所以f(f(2)-22+2)=f(2)-22+2
又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1
若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.
(II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.
又因为有且只有一个实数x0,使得f(x0)=x0
所以对任意x∈R,有f(x)-x2+x=x0
在上式中令x=x0,有f(x0)-x02+x0=x0
又因为f(x0)=x0,所以x0-x02=0,故x0=0或x0=1
若x0=0,则f(x)-x2+x=0,即f(x)=x2-x
但方程x2-x=x有两个不相同实根,与题设条件矛盾.故x0≠0
若x0=1,则有f(x)-x2+x=1,即f(x)=x2-x+1,此时f(x)=x有且仅有一个实数1.
综上,所求函数为f(x)=x2-x+1(x∈R)
所以f(f(2)-22+2)=f(2)-22+2
又由f(2)=3,得f(3-22+2)=3-22+2,即f(1)=1
若f(0)=a,则f(a-02+0)=a-02+0,即f(a)=a.
(II)因为对任意x∈R,有f(f(x)-x2+x)=f(x)-x2+x.
又因为有且只有一个实数x0,使得f(x0)=x0
所以对任意x∈R,有f(x)-x2+x=x0
在上式中令x=x0,有f(x0)-x02+x0=x0
又因为f(x0)=x0,所以x0-x02=0,故x0=0或x0=1
若x0=0,则f(x)-x2+x=0,即f(x)=x2-x
但方程x2-x=x有两个不相同实根,与题设条件矛盾.故x0≠0
若x0=1,则有f(x)-x2+x=1,即f(x)=x2-x+1,此时f(x)=x有且仅有一个实数1.
综上,所求函数为f(x)=x2-x+1(x∈R)
看了 已知定义域为R的函数f(x)...的网友还看了以下:
求几条基本初等函数的题1、设关于x的函数f(x)=4^x—2^x+1—b(b属于R),若函数有零点 2020-04-27 …
matlab matlabc=40r=120a=96o=20y=3(角度)f=0.2[x]=sol 2020-05-16 …
已知定义域为R的函数f(x)不是奇函数,则下列命题一定为真命题的是A任意x∈R,f(-x)≠-f( 2020-06-09 …
定义在(-1,1)上的函数f(x)-f(y)=f((x-y)/(1-xy)),当X∈(-1,0), 2020-06-09 …
已知a大于0,函数f(x)=ax^2+bx+c,若x0满足关于x的方程2ax+b=0,则假命题是A 2020-07-13 …
关于高一函数的换元法已知f(x-1)=x²-2x,求f(x)老师给的解题过程:设t=x-1∵x∈R 2020-08-01 …
已知y=f(x)是定义在R上的周期函数,且周期为2,当X∈[-1,1)时,f(x)=2^x已知y= 2020-08-02 …
试求出所有的函数f:R→R,使得对于任何的x,y∈R,都有f(x^2+y^2)=xf(x)+yf(y 2020-10-31 …
物理公式的比例关系A,F=Gm1m2/r^2可知F与r的平方成饭比B,F=mv^2/r可知r与F成饭 2020-11-01 …
几何画板中的一些函数,y=f(x),x=f(y),r=f(θ),θ=f(r)y=f(x)我知道r=f 2020-12-08 …