早教吧 育儿知识 作业答案 考试题库 百科 知识分享

(2009•朝阳区一模)如图,直三棱柱ABC-A′B′C′的侧棱AA′=4,底面三角形ABC中,AC=BC=2,∠ACB=90°,D是AB的中点.(Ⅰ)求证:CD⊥AB′;(Ⅱ)求二面角A′-AB′-C的大小.

题目详情
(2009•朝阳区一模)如图,直三棱柱ABC-A′B′C′的侧棱AA′=4,底面三角形ABC中,AC=BC=2,∠ACB=90°,D是AB的中点.
(Ⅰ)求证:CD⊥AB′;
(Ⅱ)求二面角A′-AB′-C的大小.
▼优质解答
答案和解析
(Ⅰ)证明:因为AC=BC,D是AB的中点,所以CD⊥AB.
由已知,三棱柱ABC-A′B′C′是直三棱柱,
所以平面ABC⊥平面ABB′A′.
所以CD⊥平面ABB′A′.
又因为AB′⊂平面ABB′A′,
所以CD⊥AB′.(6分)
(Ⅱ)由(1)知CD⊥平面ABB′A′.
过D作DE⊥AB′,垂足为E,连接CE.
由三垂线定理可知CE⊥AB′,
所以∠CED是二面角B-AB'-C的平面角.
由已知可求得CD=
2
DE=
2
3

所以tan∠CED=
CD
DE
6
2

所以二面角B-AB′-C的大小为arctan
6
2

由于二面角A′-AB′-C与二面角B-AB′-C的大小互补,
所以二面角A′-AB′-C的大小为π−arctan
6
2
.(13分)