早教吧作业答案频道 -->其他-->
设m,n是给定的整数,4<m<n,A1A2…A2n+1是一个正2n+1边形,P={A1,A2,…,A2n+1}.求顶点属于P且恰有两个内角是锐角的凸m边形的个数.
题目详情
设m,n是给定的整数,4<m<n,A1A2…A2n+1是一个正2n+1边形,P={A1,A2,…,A2n+1}.求顶点属于P且恰有两个内角是锐角的凸m边形的个数.
▼优质解答
答案和解析
先证一个引理:顶点在P中的凸m边形至多有两个锐角,且有两个锐角时,这两个锐角必相邻.
事实上,设这个凸m边形为P1P2Pm,只考虑至少有一个锐角的情况,此时不妨设∠PmP1P2<
,则∠P2PjPm=π−∠P2P1Pm>
(3≤j≤m−1),
更有∠Pj−1PjPj+1>
(3≤j≤m−1).
而∠P1P2P3+∠Pm-1PmP1>π,故其中至多一个为锐角,这就证明了引理.
由引理知,若凸m边形中恰有两个内角是锐角,则它们对应的顶点相邻.
在凸m边形中,设顶点Ai与Aj为两个相邻顶点,且在这两个顶点处的内角均为锐角.
设Ai与Aj的劣弧上包含了P的r条边(1≤r≤n),这样的(i,j)在r固定时恰有2n+1对.
(1)若凸m边形的其余m-2个顶点全在劣弧AiAj上,而AiAj劣弧上有r-1个P中的点,此时这m-2个顶点的取法数为Cr-1m-2.
(2)若凸m边形的其余m-2个顶点全在优弧AiAj上,取Ai,Aj的对径点Bi,Bj,由于凸m边形在顶点Ai,Aj处的内角为锐角,
所以,其余的m-2个顶点全在劣弧BiBj上,而劣弧BiBj上恰有r个P中的点,此时这m-2个顶点的取法数为Crm-2.
所以,满足题设的凸m边形的个数为
=(2n+1)(Cn+1m-1+Cnm-1).
故顶点属于P且恰有两个内角是锐角的凸m边形的个数为:(2n+1)(Cn+1m-1+Cnm-1).
事实上,设这个凸m边形为P1P2Pm,只考虑至少有一个锐角的情况,此时不妨设∠PmP1P2<
π |
2 |
π |
2 |
更有∠Pj−1PjPj+1>
π |
2 |
而∠P1P2P3+∠Pm-1PmP1>π,故其中至多一个为锐角,这就证明了引理.
由引理知,若凸m边形中恰有两个内角是锐角,则它们对应的顶点相邻.
在凸m边形中,设顶点Ai与Aj为两个相邻顶点,且在这两个顶点处的内角均为锐角.
设Ai与Aj的劣弧上包含了P的r条边(1≤r≤n),这样的(i,j)在r固定时恰有2n+1对.
(1)若凸m边形的其余m-2个顶点全在劣弧AiAj上,而AiAj劣弧上有r-1个P中的点,此时这m-2个顶点的取法数为Cr-1m-2.
(2)若凸m边形的其余m-2个顶点全在优弧AiAj上,取Ai,Aj的对径点Bi,Bj,由于凸m边形在顶点Ai,Aj处的内角为锐角,
所以,其余的m-2个顶点全在劣弧BiBj上,而劣弧BiBj上恰有r个P中的点,此时这m-2个顶点的取法数为Crm-2.
所以,满足题设的凸m边形的个数为
|
故顶点属于P且恰有两个内角是锐角的凸m边形的个数为:(2n+1)(Cn+1m-1+Cnm-1).
看了 设m,n是给定的整数,4<m...的网友还看了以下:
这个程序有什么错误?是要用递归数列#includeintmain(){intb,n,i,x,P;s 2020-06-02 …
经分析某条多肽链中有O原子p个,N原子q个,它彻底水解后,只得到下列四种氨基酸.分析推算可知,1分 2020-06-12 …
我们知道,任意一个正整数n都可以进行这样的分n=p×q(p,q是正整数,且p≤q),在n的所有这种 2020-06-30 …
设A1,A2为两个随机事件,P(A1A2)>0,已知A1,A2同时发生,必导致A发生,则下面关系式 2020-07-09 …
经分析某条多肽链中有O原子p个,N原子q个,它彻底水解后,只得到下列四种氨基酸.分析推算可知,1分 2020-07-20 …
我们把分数分子是1,分母是正整数的分数叫做分数单位.任何一个单位分数1/n=1/p+1/q(n,p 2020-07-30 …
几何分布无记忆性证明中证:P{x=m+n|x>m}=P(X=m+n,x>m)/P{x>m}=P(X= 2020-10-31 …
有n个站点,每个站点发生某个事件的概率是p,那么发生事件总数为i的概率是b(i;n,p),b(i;n 2020-11-22 …
排列证明:P(m,n)=P(k,n)P(m-k,n-k)P(m,n)=n!/(n-m)!P(k,n) 2020-12-05 …
有一个公用电话亭,在观察使用这个电话的人的流量时,设在某一时刻有n个人正在使用电话或等待使用的概率为 2021-01-08 …