我们知道,任意一个正整数n都可以进行这样的分n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=pq.
我们知道,任意一个正整数n都可以进行这样的分 n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12-1>6-2>4-3,所有3×4是12的最佳分解,所以F(12)=.
(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;
(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.
答案和解析
(1)对任意一个完全平方数m,设m=n
2(n为正整数),
∵|n-n|=0,
∴n×n是m的最佳分解,
∴对任意一个完全平方数m,总有F(m)=
=1;
(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,
∵t为“吉祥数”,
∴t′-t=(10y+x)-(10x+y)=9(y-x)=18,
∴y=x+2,
∵1≤x≤y≤9,x,y为自然数,
∴“吉祥数”有:13,24,35,46,57,68,79,
∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,
∵>>>>>>,
∴所有“吉祥数”中,F(t)的最大值是.
若m n为正整数 设M=2m+1 N=2n-1 (1)当m=n时 求证 M+N一定能被4整除 若M 2020-05-16 …
已知数列{an}(n≥0)满足a0=0,a1=1,对于所有正整数n,有an+1=2an+2007a 2020-05-17 …
(N-3)^n=(n-3)*2n-2求N所有正整数的解要所有正整数的解啊,我知道一种解是2不知其中 2020-06-16 …
从负一到一有3个整数,从负二到二有5个整数,那从负N到N(N为正整数)有多少个整数请说出理由 2020-06-16 …
用vfp解决:一个正整数有可能可以被表示为n(n=2)个连续正…一个正整数有可能可以被表示为n(n 2020-06-27 …
高二数列问题对于正数p1,p2,...,pn(n为正整数),我们称n/(1/p1+1/p2+... 2020-07-22 …
已知函数f(n)=log以(n+1)为底的(n+2)的对数(n为正整数)满足f(1)*f(2)*f 2020-07-24 …
一个与正整数n有关的命题,当n=2时成立,且若n=k时命题成立推出n=k+2时命题成立,则一定有A 2020-07-29 …
在f(m,n)中,.m.n.f(m,n)均为非负整数且对任意的m,n有f(0,n)=n+1,f(m 2020-07-31 …
阅读材料:已知分式3n+8n+1,化简后结果是整数,符合一切整数的n有哪些?∵3n+8n+1=3n+ 2020-11-07 …