早教吧作业答案频道 -->其他-->
在二项式定理这节教材中有这样一个性质:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30相加得2S=5•C30+5
题目详情
在二项式定理这节教材中有这样一个性质:Cn0+Cn1+Cn2+Cn3+…Cnn=2n,n∈N
(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:
设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用类似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)将(1)的情况推广到一般的结论,并给予证明
(3)设Sn是首项为a1,公比为q的等比数列{an}的前n项的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.
(1)计算1•C30+2•C31+3•C32+4•C33的值方法如下:
设S=1•C30+2•C31+3•C32+4•C33又S=4•C33+3•C32+2•C31+1•C30
相加得2S=5•C30+5•C31+5•C32+5•C33即2S=5•23
所以2S=5•22=20利用类似方法求值:1•C20+2•C21+3•C22,1•C40+2•C41+3•C42+4•C43+5•C44
(2)将(1)的情况推广到一般的结论,并给予证明
(3)设Sn是首项为a1,公比为q的等比数列{an}的前n项的和,求S1Cn0+S2Cn1+S3Cn2+S4Cn3+…+Sn+1Cnn,n∈N.
▼优质解答
答案和解析
(1)设S=1•C20+2•C21+3•C22又S=3•C22+2•C21+1•C20
相加2S=4(C20+C21+C22)=16,S=8
设S=1•C40+2•C41+3•C42+4•C43+5•C44
又S=5•C44+4•C43+3•C42+2•C41+1•C40
相加2S=6(C30+C41+C42+C43+C44),∴S=3•24=48
(2)1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn=(n+2)•2n-1
设S=1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn
又S=(n+1)Cnn+nCnn-1+…+1•Cn0
相加2S=(n+2)(Cn0+Cn1+…+Cnn)∴S=
•2n=(n+2)•2n−1
(3)当q=1时 Sn=na1S1Cn0+S2Cn1+…+Sn+1Cnn
=a1Cn0+2a1Cn1+…+(n+1)a1Cnn
=a1(1•Cn0+2•Cn1+…+(n+1)Cnn)
=a1•(n+2)•2n-1
当q≠1时 Sn=
=
−
qn
S1Cn0+S2Cn1+S3Cn2+…+Sn+1Cnn=(
−
q)
+(
−
q2)
+…+(
−
qn+1)
=
(
+
+…+
)−
(q
+q2
+…+qn+1
)
=
•2n−
•q(
•q0+
•q1+…+
qn)
=
•2n−
•q(1+q)n=
−
综上,q=1时 S1Cn0+…+Sn+1Cnn=a1(n+2)•2n-1q≠1时S1
+…+Sn+1
=
−
相加2S=4(C20+C21+C22)=16,S=8
设S=1•C40+2•C41+3•C42+4•C43+5•C44
又S=5•C44+4•C43+3•C42+2•C41+1•C40
相加2S=6(C30+C41+C42+C43+C44),∴S=3•24=48
(2)1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn=(n+2)•2n-1
设S=1•Cn0+2•Cn1+3•Cn2+…+(n+1)Cnn
又S=(n+1)Cnn+nCnn-1+…+1•Cn0
相加2S=(n+2)(Cn0+Cn1+…+Cnn)∴S=
n+2 |
n |
(3)当q=1时 Sn=na1S1Cn0+S2Cn1+…+Sn+1Cnn
=a1Cn0+2a1Cn1+…+(n+1)a1Cnn
=a1(1•Cn0+2•Cn1+…+(n+1)Cnn)
=a1•(n+2)•2n-1
当q≠1时 Sn=
a1(1−qn) |
1−q |
a1 |
1−q |
a1 |
1−q |
S1Cn0+S2Cn1+S3Cn2+…+Sn+1Cnn=(
a1 |
1−q |
a1 |
1−q |
C | 0 n |
a1 |
1−q |
a1 |
1−q |
C | 1 n |
a1 |
1−q |
a1 |
1−q |
C | n n |
=
a1 |
1−q |
C | 0 n |
C | 1 n |
C | n n |
a1 |
1−q |
C | 0 n |
C | 1 n |
C | n n |
=
a1 |
1−q |
a1 |
1−q |
C | 0 n |
C | 1 n |
C | n n |
=
a1 |
1−q |
a1 |
1−q |
a1•2n |
1−q |
a1q(1+q)n |
1−q |
综上,q=1时 S1Cn0+…+Sn+1Cnn=a1(n+2)•2n-1q≠1时S1
C | 0 n |
C | n n |
a1•2n |
1−q |
a1q(1+q)n |
1−q |
看了 在二项式定理这节教材中有这样...的网友还看了以下:
观察下列等式:1^3=1^2,1^3+2^3=3^2,1^3+2^3+3^3=6^2,1^3+2^ 2020-05-15 …
8年级数学题:3的n次方+m能被13整除,证明3的n+3次方能被13整除.急用,谢谢刚知道:3^( 2020-05-15 …
1/1=11/2+2/2+1/2=21/3+2/3+3/3+2/3+1/3=31/4+2/4+3/ 2020-06-02 …
求解答下面几道数学题!是有关数学归纳法的!谢谢在线等第一题:已知1^3+2^3+3^3+……+n^ 2020-06-06 …
观察各式3*1=3,3*3=9,3*3*3=27,3*3*3*3=81...观察各式3*1=3,3 2020-07-19 …
Tn=3×3+5×3^2+7×3^3+.+(2n-1)×3^n-1+(2n+1)×3^n(3^2表 2020-07-29 …
对于算式2*(3+1)*(3*3+1)*(3*3*3*3+1)*(3*3*3*3*3*3*3*3+ 2020-07-30 …
二次根式√24-(√1/2+2√2/3)-(√1/8-√6)(√18-4√1/2-√3-√2)/√ 2020-07-30 …
a^3+b^3+c^3-3abc=0=(a+b)^3+c^3-3a^2b-3ab^2-3abc,我 2020-07-31 …
观察下列各式:1^3+2^3=1+8=9,而(1+2)^2=9……观察下列各式:1^3+2^3=1+ 2021-01-01 …