早教吧作业答案频道 -->数学-->
无穷数列P:a1,a2,…,an,…,满足ai∈N*,且ai≤ai+1(i∈N*),对于数列P,记Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的数.(1)若数列P:1‚3‚4‚7‚…,则
题目详情
无穷数列 P:a1,a2,…,an,…,满足ai∈N*,且ai≤ai+1(i∈N*),对于数列P,记Tk(P)=min{n|an≥k}(k∈N*),其中min{n|an≥k}表示集合{n|an≥k}中最小的数.
(1)若数列P:1‚3‚4‚7‚…,则T5(P)=___;
(2)已知a20=46,则s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=___.
(1)若数列P:1‚3‚4‚7‚…,则T5(P)=___;
(2)已知a20=46,则s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=___.
▼优质解答
答案和解析
(1)∵数列P:1‚3‚4‚7‚…,即从第三项起每项是前两项的和,
∴T1(P)=1,T2(P)=2,T3(P)=2,T4(P)=3,T5(P)=4;
故答案是:4;
(2)考查符合条件的数列P中,
若存在某个i(1≤i≤19)满足ai≤ai+1,
对应可得Tk(P),及s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P).
∵Tk(P)=min{n|an≥k}(k∈N*),∴Tai+1(P)=i+1,
下面将数列P略作调整,仅将第ai的值增加1,具体如下:
将aj′=aj+1,对于任何j(j≠1)令aj′=aj,可得数列P′及其对应数列Tk(P′),
根据数列Tk(P′)的定义,可得Tai+1(P′)=i,且Tj(P′)=Tj(P)(j≠ai+1).
显然Tai+1(P′)=Tai+1(P)-1,
∴s′=a1′+a2′+…+a20′+T1(P′)+T2(P′)+…+T46(P′)
=a1+a2+…+ai-1+(ai+1)+ai+1+…+a20+T1(P)+T2(P)+…+(Tai+1-1)+Tai+2+…+T46(P)
=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=s,
即调整后s′=s.
如果数列{an′}还有存在相邻两项不相等,继续做以上的操作,
最终一定可以经过有限次的操作,使得{an}中的每一项变为相等,
且操作中保持s的值不变,
而当a1=a2=…=a20=46时,T1(P)=T2(P)=…=T46(P)=1,
∴s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=46×20+46=966.
故答案是:966.
∴T1(P)=1,T2(P)=2,T3(P)=2,T4(P)=3,T5(P)=4;
故答案是:4;
(2)考查符合条件的数列P中,
若存在某个i(1≤i≤19)满足ai≤ai+1,
对应可得Tk(P),及s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P).
∵Tk(P)=min{n|an≥k}(k∈N*),∴Tai+1(P)=i+1,
下面将数列P略作调整,仅将第ai的值增加1,具体如下:
将aj′=aj+1,对于任何j(j≠1)令aj′=aj,可得数列P′及其对应数列Tk(P′),
根据数列Tk(P′)的定义,可得Tai+1(P′)=i,且Tj(P′)=Tj(P)(j≠ai+1).
显然Tai+1(P′)=Tai+1(P)-1,
∴s′=a1′+a2′+…+a20′+T1(P′)+T2(P′)+…+T46(P′)
=a1+a2+…+ai-1+(ai+1)+ai+1+…+a20+T1(P)+T2(P)+…+(Tai+1-1)+Tai+2+…+T46(P)
=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=s,
即调整后s′=s.
如果数列{an′}还有存在相邻两项不相等,继续做以上的操作,
最终一定可以经过有限次的操作,使得{an}中的每一项变为相等,
且操作中保持s的值不变,
而当a1=a2=…=a20=46时,T1(P)=T2(P)=…=T46(P)=1,
∴s=a1+a2+…+a20+T1(P)+T2(P)+…+T46(P)=46×20+46=966.
故答案是:966.
看了 无穷数列P:a1,a2,…,...的网友还看了以下:
∑(2^n)/(n^n)的收敛性你回答的是:取后一项后前一项的比.(2^n+1)/((n+1)^(n 2020-03-31 …
当n取正整数时,定义N(n)表示n的最大奇因数.如N(1)=1,N(2)=1,N(3)=3,N(4 2020-05-13 …
若n为一自然数,说明n(n+1)(n+2)(n+3)与1的和为一平方数n(n+1)(n+2)(n+ 2020-05-16 …
求渐化式~急已知:p(n)=1/2p(n-1)+1/2p(n-2)求p(n)用n表示由已知可得:p 2020-07-08 …
1.已知数列{a(n)}满足a(n)a(n+1)a(n+2)a(n+3)=24,且a1=1a2=2 2020-07-09 …
数列{n×2^(n-1)}的前n项和为多少?A.-n*2^n-1+2^nBn*2^n+1-2^nC 2020-07-09 …
设有N件产品,从中任取n件.(不放回)书上写取法共CnN,即[N(N-1)…(N-n+1)]/n! 2020-07-21 …
已知一个边长为a的等边三角形,现将其边长n(n为大于2的整数)等分,并以相邻等分点为顶点向外作小等 2020-08-01 …
已知数列{a底n}中,a1=a2=1,且an=an-1+an-2(n≥3,n∈n*),设bn=an/ 2020-11-27 …
求数列an=n(n+1)的前n项和.an=n(n+1)=[n(n+1)(n+2)-(n-1)n(n+ 2020-12-03 …