早教吧作业答案频道 -->数学-->
已知函数f(x)=lnx+kex(k为常数,e为自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(1)求k的值,并求f(x)的单调区间;(2)设g(x)=xf′(x),其中f′(x)
题目详情
已知函数f(x)=
(k为常数,e为自然对数的底数),曲线y=f(x)在点(1,f(1)) 处的切线与x轴平行.
(1)求k的值,并求f (x)的单调区间;
(2)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.
lnx+k |
ex |
(1)求k的值,并求f (x)的单调区间;
(2)设g(x)=xf′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.
▼优质解答
答案和解析
(1)由f(x)=
,x∈(0,+∞),得f′(x)=
,x∈(0,+∞).
由于曲线y=f(x)在点(1,f(1))处的切线与x轴平行.所以f′(1)=0,因此k=1.…(2分)
得f′(x)=
(1-x-xln x),x∈(0,+∞),
令h(x)=1-x-xln x,x∈(0,+∞),
当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.
又ex>0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.
因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).…(6分)
(2)因为g(x)=xf′(x),所以g(x)=
(1-x-xln x),x∈(0,+∞),
由(1)得,h(x)=1-x-xln x,求导得h′(x)=-ln x-2=-(ln x-ln e-2).
所以当x∈(0,e-2)时,h′(x)>0,函数h(x)单调递增;
当x∈(e-2,+∞)时,h′(x)<0,函数h(x)单调递减.…(9分)
所以当x∈(0,+∞)时,h(x)≤h(e-2)=1+e-2.
又当x∈(0,+∞)时,0<
<1,
所以当x∈(0,+∞)时,g(x)=
•h(x)<1+e-2,即g(x)<1+e-2.…(12分)
lnx+k |
ex |
1-kx-xlnx |
xex |
由于曲线y=f(x)在点(1,f(1))处的切线与x轴平行.所以f′(1)=0,因此k=1.…(2分)
得f′(x)=
1 |
xex |
令h(x)=1-x-xln x,x∈(0,+∞),
当x∈(0,1)时,h(x)>0;当x∈(1,+∞)时,h(x)<0.
又ex>0,所以x∈(0,1)时,f′(x)>0;x∈(1,+∞)时,f′(x)<0.
因此f(x)的单调递增区间为(0,1),单调递减区间为(1,+∞).…(6分)
(2)因为g(x)=xf′(x),所以g(x)=
1 |
ex |
由(1)得,h(x)=1-x-xln x,求导得h′(x)=-ln x-2=-(ln x-ln e-2).
所以当x∈(0,e-2)时,h′(x)>0,函数h(x)单调递增;
当x∈(e-2,+∞)时,h′(x)<0,函数h(x)单调递减.…(9分)
所以当x∈(0,+∞)时,h(x)≤h(e-2)=1+e-2.
又当x∈(0,+∞)时,0<
1 |
ex |
所以当x∈(0,+∞)时,g(x)=
1 |
ex |
看了 已知函数f(x)=lnx+k...的网友还看了以下:
关于函数f(x)=|x|/||x|-1|给出下列四个命题;(以下见问题补充)关于函数f(x)=|x 2020-05-16 …
已知函数f(x)=x^2-2X+ln(2X+a)在X=0处取得极值(1)f(x)的单调区间(2)若 2020-06-03 …
如何用mathematica计算拟合度?给程序,谢谢,比如,我的一次线性数据是:data1={{0 2020-07-18 …
设函数f(x)=(x-1)e^x-kx^2(1)当k=1时,求函数f(x)的单调区间(2)当k属于 2020-07-21 …
设函数f(x)=(x-1)e^x-kx^2(1)当k=1时,求函数f(x)的单调区间(2)当k属于 2020-07-21 …
函数f(x)满足条件1.a≤f(x)≤b,对于任意的x∈[a,b];2.存在常数k,使得对于任意的 2020-07-26 …
单调增函数f(x)对任意x,y∈R,满足f(x+y)=f(x)+f(y),若f(k*3^x)+f( 2020-08-01 …
已知函数f(x)=2lnxk(x-1/x)(k∈R)⑴当k=-1时,求函数y=f(x)的...已知函 2020-10-31 …
已知函数f(x)=2lnx+k(x-1/x)(k∈R)⑴当k=-1时,求函数y=f(x)的...已知 2020-10-31 …
matlab中的fmincon函数请帮忙看下这段程序哪里出错了运行不出来functionf=myfu 2020-12-08 …