早教吧 育儿知识 作业答案 考试题库 百科 知识分享

已知函数f(x)=ex-1(e是自然对数的底数).(1)证明:对任意的实数x,不等式f(x)≥x恒成立;(2)数列{lnnn2}(n∈N+)的前n项和为Tn,求证:Tn<n22(n+1).

题目详情
已知函数f(x)=ex-1(e是自然对数的底数).
(1)证明:对任意的实数x,不等式f(x)≥x恒成立;
(2)数列{
lnn
n2
}(n∈N+)的前n项和为Tn,求证:Tn
n2
2(n+1)
▼优质解答
答案和解析
(I)设h(x)=f(x)-x=ex-1-x
∴h'(x)=ex-1-1,
当x>1时,h'(x)>0,h(x)为增,
当x<1时,h'(x)<0,h(x)为减,
当x=1时,h(x)取最小值h(1)=0.
∴h(x)≥h(1)=0,即f(x)≥x
(II)由(I)可知,对任意的实数x,不等式ex-1≥x恒成立,
所以en2−1≥n2,lnen2−1≥lnn2,即n2-1≥lnn2
1−
1
n2
lnn2
n2
2lnn
n2

lnn
n2
1
2
(1−
1
n2
)<
1
2
(1−
1
n(n+1)
)=
1
2
(1−
1
n
+
1
n+1
)
Tn=
ln1
12
+
ln2
22
+
ln3
32
+…+
lnn
n2

1
2
[(1−1+
1
2
)+(1−
1
2
+
1
3
)+(1−
1
3
+
1
4
)+…+(1−
1
n
+
1
n+1
)]
=
1
2
[n−1+
1
n+1
]=
1
2
×
n2
n+1
=
n2
2(n+1)