早教吧作业答案频道 -->数学-->
已知椭圆x^2/a^2+y^2/b^2=1的离心率为3分之根号6,右焦点为(2倍根号2,0)斜率为1的直线l的直线与椭圆C交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2)求三角形PAB的面积!要求方法简洁好
题目详情
已知椭圆x^2/a^2+y^2/b^2=1的离心率为3分之根号6,右焦点为(2倍根号2,0)斜率为1的直线l的直线与椭圆C交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2)求三角形PAB的面积!要求方法简洁好的方法我保证加分的!
▼优质解答
答案和解析
x²/a²+y²/b²=1(a>b>0) 的离心率为√6/3
∴c/a=√6/3
∵c=2√2
∴a=(2√2)(3/√6)=2√3
∵b²=a²-c²=12-8=4
∴b=2
于是椭圆方程为 x²/12+y²/4=1
设直线L的方程为 y=x+m
代入椭圆方程,得
x²+3(x+m)²=12 4x²+6mx+3m²-12=0
这个关于x的一元二次方程的两个根,是直线与椭圆的两个交点A(x1,y1),B(x2,y2)的横坐标x1,x2
∴x1+x2=-3m/2 x1x2=(3m²-12)/4
y1+y2=x1+x2+2m=-3m/2+2m=m/2
y1y2=x1x2+m(x1+x2)+m²=3m²/4-3-3m²/2+m²=m²/4-3
以A,B为底边做等腰三角形,顶点为P(-3,2)
那么AB上的高所在直线经过P点,且垂直于AB,它的斜率为-1 ,其方程是
y-2=-(x+3) 即 x+y+1=0
AB 的中点坐标为 x'=(x1+x2)/2 =-3m/4 y'=(y1+y2)/2=m/4 在高线上
∴-3m/4+m/4+1=0 m=2
于是 直线L的方程是 x-y+2 =0
A,B的坐标分别是 (-3,-1)和(0,2)
∴AB=3√2 AB上的高h=|-3-2+2|/√2=3/√2
∴三角形APB的面积=1/2ABh=9/2
∴c/a=√6/3
∵c=2√2
∴a=(2√2)(3/√6)=2√3
∵b²=a²-c²=12-8=4
∴b=2
于是椭圆方程为 x²/12+y²/4=1
设直线L的方程为 y=x+m
代入椭圆方程,得
x²+3(x+m)²=12 4x²+6mx+3m²-12=0
这个关于x的一元二次方程的两个根,是直线与椭圆的两个交点A(x1,y1),B(x2,y2)的横坐标x1,x2
∴x1+x2=-3m/2 x1x2=(3m²-12)/4
y1+y2=x1+x2+2m=-3m/2+2m=m/2
y1y2=x1x2+m(x1+x2)+m²=3m²/4-3-3m²/2+m²=m²/4-3
以A,B为底边做等腰三角形,顶点为P(-3,2)
那么AB上的高所在直线经过P点,且垂直于AB,它的斜率为-1 ,其方程是
y-2=-(x+3) 即 x+y+1=0
AB 的中点坐标为 x'=(x1+x2)/2 =-3m/4 y'=(y1+y2)/2=m/4 在高线上
∴-3m/4+m/4+1=0 m=2
于是 直线L的方程是 x-y+2 =0
A,B的坐标分别是 (-3,-1)和(0,2)
∴AB=3√2 AB上的高h=|-3-2+2|/√2=3/√2
∴三角形APB的面积=1/2ABh=9/2
看了 已知椭圆x^2/a^2+y^...的网友还看了以下:
已知中心在原点"焦点在X轴上的椭圆C的离心率e=二分之一"直线l1:x+2y-4=0是椭圆C的切线 2020-05-13 …
已知椭圆中心在原点,焦点在坐标轴上,焦距为,另一双曲线与椭圆有公共焦点,且椭圆的半长轴长比双曲线的 2020-05-13 …
(2011•通州区一模)已知椭圆C:x2a2+y2b2=1(a>b>0)的离心率为e=12,右焦点 2020-05-15 …
已知椭圆C:+=1(a>b>0)的离心率为,椭圆C上任意一点到椭圆C两个焦点的距离之和为6.(1) 2020-05-15 …
椭圆x^2/a^2+y^2/b^2=1(a>b>0)长轴的右端点为a,若椭圆上存在一点p,使得∠a 2020-06-21 …
如图,F1、F2是椭圆=1(a>b>0)的左、右焦点,点M在x轴上,且=,过点F2的直线与椭圆交于 2020-06-21 …
设椭圆C:x2╱a2+y2╱b2=1(a>b>0)的离心率e为根号2╱2,点A是椭圆上的一点,且A 2020-06-30 …
已知椭圆标准方程为x^2+y^2=1,求椭圆长轴和短轴的长、焦点坐标,顶点坐标及离心率 2020-07-31 …
已知椭圆方程为9分之x的平方+5分之y的平方=1,求椭圆的焦点坐标,离心率,准线方程 2020-07-31 …
如图,椭圆经过点离心率,直线的方程为.(Ⅰ)求椭圆的方程;(Ⅱ)是经过右焦点的任一弦(不经过点), 2020-08-01 …