早教吧作业答案频道 -->其他-->
(2014•抚顺一模)如图,在平行四边形ABCD中,分别以AB、AD为边向外作等边三角形△ABE、△ADF,延长CB交AE于点G(点G在点A、E之间),连接CE、CF、EF,则以下四个结论中,正确的个数是(
题目详情

①△CDF≌△EBC;②∠CDF=∠EAF;③△CEF是等边三角形;④CG⊥AE.
A.1个
B.2个
C.3个
D.4个
▼优质解答
答案和解析
在▱ABCD中,∠ADC=∠ABC,AD=BC,CD=AB,
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
,
∴△CDF≌△EBC(SAS),故①正确;
在▱ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正确;
同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故③正确;
当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故④错误;
综上所述,正确的结论有①②③,共3个.
故选C.
∵△ABE、△ADF都是等边三角形,
∴AD=DF,AB=EB,∠ADF=∠ABE=60°,
∴DF=BC,CD=BC,
∴∠CDF=360°-∠ADC-60°=300°-∠ADC,
∠EBC=360°-∠ABC-60°=300°-∠ABC,
∴∠CDF=∠EBC,
在△CDF和△EBC中,
|
∴△CDF≌△EBC(SAS),故①正确;
在▱ABCD中,∠DAB=180°-∠ADC,
∴∠EAF=∠DAB+∠DAF+∠BAE=180°-∠ADC+60°+60°=300°-∠ADC,
∴∠CDF=∠EAF,故②正确;
同理可证△CDF≌△EAF,
∴EF=CF,
∵△CDF≌△EBC,
∴CE=CF,
∴EC=CF=EF,
∴△ECF是等边三角形,故③正确;
当CG⊥AE时,∵△ABE是等边三角形,
∴∠ABG=30°,
∴∠ABC=180°-30°=150°,
∵∠ABC=150°无法求出,故④错误;
综上所述,正确的结论有①②③,共3个.
故选C.
看了 (2014•抚顺一模)如图,...的网友还看了以下:
直线y=-3/1x+6与x轴交于A点,与y轴交于B点,求AB两点坐标,P在x轴上若三角形PAB是直 2020-05-13 …
二次函数的一些题目1..当二次函数图像与x轴交点的横坐标分别是xa=-3,x2=1时,且与y轴交点 2020-05-13 …
如图,抛物线y=-5/4x^2+17/4x+1与y轴交于A点,过点A的直线与抛物线交于另一点B,过 2020-05-13 …
已知二次函数 y=x²-(m²+8)x+2(m²+6).(1)求证:不论m取任何实数,此函数图像都 2020-05-16 …
如图1,正方形ABCD中,C(-3,0),D(0,4).过A点作AF⊥y轴于F点,过B点作x轴的垂 2020-06-13 …
已知如图,抛物线y=ax2+bx+c与x轴相交于点B(1,0)C(4,0)两点,与Y轴的正半轴相交 2020-06-14 …
已知:如图,直线y=3x+3与x轴交于C点,与y轴交于A点,B点在x轴上,△OAB是等腰直角三角形 2020-07-22 …
已知直线y=-x+2与x轴交于A点,与y轴交于B点,一抛物线经过A,B两点且对称轴为x=2求:1, 2020-07-22 …
如图,在平面直角坐标系中,直线AC与x轴交于C点,与y轴交于A点,直线AB与x轴交于B点,与y轴交于 2020-11-01 …
如图,正方形ABCD中,C(-3,0),D(0,4),过A点作AF⊥y轴于F点,过B点作x轴的垂线交 2020-11-08 …