早教吧 育儿知识 作业答案 考试题库 百科 知识分享

如图1,正方形ABCD中,C(-3,0),D(0,4).过A点作AF⊥y轴于F点,过B点作x轴的垂线交过A点的反比例函数的图象于E点,交x轴于G点.(1)求证:△CDO≌△DAF;(2)求点E的坐标;(3)如图2

题目详情
如图1,正方形ABCD中,C(-3,0),D(0,4).过A点作AF⊥y轴于F点,过B点作x轴的垂线交过A点的反比例函数的图象于E点,交x轴于G点.
(1)求证:△CDO≌△DAF;
(2)求点E的坐标;
(3)如图2,过点C作直线l∥AE,在直线l上是否存在一点P,使△PAC是等腰三角形?若存在,求P点坐标,不存在说明理由.
▼优质解答
答案和解析
(1)证明:如图1,
∵C(-3,0),D(0,4),
∴OC=3,OD=4,
∵四边形ABCD为正方形,
∴AD=CD,∠ADC=90°,
∴∠ADF+∠CDO=90°,
∵AF⊥y轴,
∴∠AFD=90°,
∴∠ADF+∠DAF=90°,
∴∠DAF=∠CDO,
在△CDO和△DAF中
∠DOC=∠AFD
∠CDO=∠DAF
CD=DA

∴△CDO≌△DAF;
(2)如图1,
∵△CDO≌△DAF,
∴AF=OD=4,DF=OC=3,
∴OF=OD+DF=3+4=7,
∴A点坐标为(-4,7),
设反比例函数解析式为y=
k
x

把A(-4,7)代入y=
k
x
得k=-4×7=-28,
∴反比例函数解析式为y=-
28
x

与(1)中的方法一样可证明△CDO≌△BGC,
∴CG=OD=4,
∴OG=OC+CG=7,
∴E点的横坐标为-7,
把x=-7代入y=-
28
x
得y=4,
∴E点坐标为(-7,4);
(3)存在.
如图2,作AH⊥x轴于H,
在Rt△ACH中,AH=7,CH=1,则AC2=72+12=50,
设直线AE的解析式为y=mx+n,
把A(-4,7)和B(-7,4)代入y=mx+n得
−4k+b=7
−7k+b=4
,解得
m=1
n=11

∴直线AE的解析式为y=x+11,
∵直线l∥AE,
∴直线l的解析式为设为y=x+b,
把C(-3,0)代入得-3+b=0,解得b=3,