早教吧作业答案频道 -->其他-->
(2011•北京)如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=12∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=55,求BC和BF的长.
题目详情

1 |
2 |
(1)求证:直线BF是⊙O的切线;
(2)若AB=5,sin∠CBF=
| ||
5 |
▼优质解答
答案和解析
(1)证明:连接AE,
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=
∠CAB.
∵∠CBF=
∠CAB,
∴∠1=∠CBF
∴∠CBF+∠2=90°
即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)过点C作CG⊥AB于G.
∵sin∠CBF=
,∠1=∠CBF,
∴sin∠1=
,
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=
,
∵AB=AC,∠AEB=90°,
∴BC=2BE=2
,
在Rt△ABE中,由勾股定理得AE=
=2
,
∴sin∠2=
=
∵AB是⊙O的直径,
∴∠AEB=90°,
∴∠1+∠2=90°.
∵AB=AC,
∴∠1=
1 |
2 |
∵∠CBF=
1 |
2 |
∴∠1=∠CBF
∴∠CBF+∠2=90°

即∠ABF=90°
∵AB是⊙O的直径,
∴直线BF是⊙O的切线.
(2)过点C作CG⊥AB于G.
∵sin∠CBF=
| ||
5 |
∴sin∠1=
| ||
5 |
∵在Rt△AEB中,∠AEB=90°,AB=5,
∴BE=AB•sin∠1=
5 |
∵AB=AC,∠AEB=90°,
∴BC=2BE=2
5 |
在Rt△ABE中,由勾股定理得AE=
AB2−BE2 |
5 |
∴sin∠2=
AE |
AB |
2
|
看了 (2011•北京)如图,在△...的网友还看了以下:
定义在R上的奇函数f(x)是增函数,偶函数g(x)在区间零到正无穷左闭右开上的图像与f(x)的图像重 2020-03-31 …
已知f(X)=Lg1-X/1+X,a,b属于(-1,1)求证:f(a)+f(B)=F(A+B)/1 2020-05-22 …
定义在R上的函数y=f(x),满足f(x+2)=-1/f(x),则().A.f(x)不是周期函数B 2020-06-03 …
高数题目设f(x)在[a,b]上可导,又f'(x)+[f(x)]^2-∫(a到x)f(t)dt=0 2020-06-12 …
设函数f(x)在点x0及其邻近有定义,且有f(x0+Δx)-f(x0)=aΔx+b(Δx)^2.a 2020-07-22 …
5道比较简单的大一积分题1.设函数f(x)在[a,b]上具有连续的导函数,且f(a)=f(b)=0 2020-07-28 …
1、已知f(x)=3的x次方,求证:(1)、f(x)乘以f(y)=f(x+y)(2)、f(x)除以 2020-07-30 …
已知定义在R上的奇函数f(x)满足f(x+1)=-f(x),且在[0,1]上递增,记a=f(12) 2020-08-01 …
f(a)+f(b)=2f[(a+b)/2]*f[(a-b)/2]的奇偶性已知函数f(x)对于任意实 2020-08-01 …
设f(x)在[a,b]连续,在(a,b)二阶可导,连接点A(a,f(a))和B(b,f(b))的直线 2020-12-28 …