早教吧作业答案频道 -->数学-->
已知方程x^2-(tanθ+i)x-(i+2)=0证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.
题目详情
已知方程x^2-(tanθ+i)x-(i+2)=0
证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.
证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.
▼优质解答
答案和解析
条件“θ≠k∏+∏/2(k∈R)”中应该是 k∈Z,否则 θ 不是实数了 ,tanθ 也就没意义了.
若有纯虚数根x=ai(a为实数,a≠0,i为虚数单位),
代入原方程得 -a²-(tanθ+i)ai-(i+2)=0,即 tanθ=(-a²+a-(i+2))/(ai)
右边分子分母都乘以i,得 tanθ=((-a²i+ai-2i)+1)/(-a)
即 tanθ=(-1/a)+((a²-a+2)/a)i
因为 a为实数,a≠0,所以 (-1/a) 为非零实数,且((a²-a+2)/a)亦为实数,
又a²-a+2=(a-1/2)²+7/4≠0,所以((a²-a+2)/a)为非零实数,
所以 (-1/a)+((a²-a+2)/a)i 为虚数,
但 θ≠kπ+π/2 (k∈Z)时,tanθ为实数,所以 tanθ=(-1/a)+((a²-a+2)/a)i 自相矛盾,所以原方程无纯虚数根.
若有纯虚数根x=ai(a为实数,a≠0,i为虚数单位),
代入原方程得 -a²-(tanθ+i)ai-(i+2)=0,即 tanθ=(-a²+a-(i+2))/(ai)
右边分子分母都乘以i,得 tanθ=((-a²i+ai-2i)+1)/(-a)
即 tanθ=(-1/a)+((a²-a+2)/a)i
因为 a为实数,a≠0,所以 (-1/a) 为非零实数,且((a²-a+2)/a)亦为实数,
又a²-a+2=(a-1/2)²+7/4≠0,所以((a²-a+2)/a)为非零实数,
所以 (-1/a)+((a²-a+2)/a)i 为虚数,
但 θ≠kπ+π/2 (k∈Z)时,tanθ为实数,所以 tanθ=(-1/a)+((a²-a+2)/a)i 自相矛盾,所以原方程无纯虚数根.
看了 已知方程x^2-(tanθ+...的网友还看了以下:
请阅读某同学解下面分式方程的具体过程.解方程1/(x-4)+4/(x-1)=2/(x-3)+3/( 2020-05-01 …
椭圆的中心为原点O,离心率e=√2/2,一条准线的方程为x=2√2……椭圆的中心为原点O,离心率e 2020-05-16 …
已知关于X的一元二次方程x^2+2(k-1)x+k^2-1=0有两个不相等的实数根已知关于x的一元 2020-05-16 …
已知关于x的方程(m+10)x^2+(n^2-2)x+3=0,当m,n为何值时,该方程(1)是一元 2020-06-02 …
(换元法)解方程:(x2-3x)2-2(x2-3x)-8=0设x2-3x=y则原方程可化为y2-2 2020-08-01 …
(x-2)^2=9(x+3)(步骤)用十字相乘法:x^2-5倍的根号2*x+83x^2-2x-1= 2020-08-03 …
一.用直接开方法解一元二次方程2(x+3)²-4=0(3x-2)(3x+2)=8(5-2x)²=9 2020-08-03 …
二元一次方程组,求后面的过程|3/4(3x-2)+2/5(4y-3=1|2(3x-2)+3(4y- 2020-08-03 …
数学题,急!要详细过程.1.解下列方程.1)3x-3=1/2x+42)(x-1)/4-1=(2x+1 2020-10-30 …
理科数学解一元一次方程(1)解方程2分之x加4减x加5=3分之x加3减6分之x减2(2)鲆方程21分 2020-11-21 …