早教吧作业答案频道 -->数学-->
已知方程x^2-(tanθ+i)x-(i+2)=0证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.
题目详情
已知方程x^2-(tanθ+i)x-(i+2)=0
证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.
证明:对任意的θ≠k∏+∏/2(k∈R)方程无纯虚数根.
▼优质解答
答案和解析
条件“θ≠k∏+∏/2(k∈R)”中应该是 k∈Z,否则 θ 不是实数了 ,tanθ 也就没意义了.
若有纯虚数根x=ai(a为实数,a≠0,i为虚数单位),
代入原方程得 -a²-(tanθ+i)ai-(i+2)=0,即 tanθ=(-a²+a-(i+2))/(ai)
右边分子分母都乘以i,得 tanθ=((-a²i+ai-2i)+1)/(-a)
即 tanθ=(-1/a)+((a²-a+2)/a)i
因为 a为实数,a≠0,所以 (-1/a) 为非零实数,且((a²-a+2)/a)亦为实数,
又a²-a+2=(a-1/2)²+7/4≠0,所以((a²-a+2)/a)为非零实数,
所以 (-1/a)+((a²-a+2)/a)i 为虚数,
但 θ≠kπ+π/2 (k∈Z)时,tanθ为实数,所以 tanθ=(-1/a)+((a²-a+2)/a)i 自相矛盾,所以原方程无纯虚数根.
若有纯虚数根x=ai(a为实数,a≠0,i为虚数单位),
代入原方程得 -a²-(tanθ+i)ai-(i+2)=0,即 tanθ=(-a²+a-(i+2))/(ai)
右边分子分母都乘以i,得 tanθ=((-a²i+ai-2i)+1)/(-a)
即 tanθ=(-1/a)+((a²-a+2)/a)i
因为 a为实数,a≠0,所以 (-1/a) 为非零实数,且((a²-a+2)/a)亦为实数,
又a²-a+2=(a-1/2)²+7/4≠0,所以((a²-a+2)/a)为非零实数,
所以 (-1/a)+((a²-a+2)/a)i 为虚数,
但 θ≠kπ+π/2 (k∈Z)时,tanθ为实数,所以 tanθ=(-1/a)+((a²-a+2)/a)i 自相矛盾,所以原方程无纯虚数根.
看了 已知方程x^2-(tanθ+...的网友还看了以下:
已知函数定义域为R,若存在常数m>0,对任意x∈R,有|f(x)|≤m|x|则称其为F函数,则f( 2020-04-27 …
已知奇函数y=f(x)是R上的减函数,对任意x∈R恒有f(kx)已知奇函数y=f(x)是R上的减函 2020-05-22 …
已知f(x)是定义在R上的减函数,其导函数f′(x)满足f(x)f′(x)+x<1,则下列结论正确 2020-06-08 …
已知定义域为R的函数f(x)不是奇函数,则下列命题一定为真命题的是A任意x∈R,f(-x)≠-f( 2020-06-09 …
已知f(x)是定义在R上的函数,f(1)=10,详细请看后面,,我们老师上课时解错了.已知f(x) 2020-06-13 …
已知f(x)是定义在R上的函数,f(1)=10,详细请看后面,,我们老师上课时解错了,已知f(x) 2020-06-13 …
X∈R能不能省略用描述法表示集合,竖杠后面写与不写X∈R意思是否一样? 2020-07-08 …
1.已知集合A={y|y=|x|,x∈R},B={y|y=2-x^,x∈R},求A∩B?2.已知集 2020-07-20 …
已知命题P:任意的X属于R,(m+1)(x^2+1)小于等于0;命题q:任意的x属于R,X^2+m 2020-07-22 …
已知R上的连续函数g(x)满足:①当x>0时,g′(x)>0恒成立(g′(x)为函数g(x)的导函数 2020-11-19 …