早教吧 育儿知识 作业答案 考试题库 百科 知识分享

定义:函数f(x)在闭区间[a,b]上的最大值与最小值之差为函数f(x)的极差,若定义在区间[-2b,3b-1]上的函数f(x)=x3-ax2-(b+2)x是奇函数,则a+b=,函数f(x)的极差为.

题目详情
定义:函数f(x)在闭区间[a,b]上的最大值与最小值之差为函数f(x)的极差,若定义在区间[-2b,3b-1]上的函数f(x)=x3-ax2-(b+2)x是奇函数,则a+b=___,函数f(x)的极差为___.
▼优质解答
答案和解析
∵定义在区间[-2b,3b-1]上的函数f(x)=x3-ax2-(b+2)x是奇函数,
-2b+3b-1=0
-a=0
,解得a=0,b=1,∴a+b=1,
∴f(x)=x3-3x,区间[-2b,3b-1]即为[-2,2].
f′(x)=3x2-3,由f′(x)=0,得x=±1,
∵f(-2)=(-2)3-3×(-2)=-2,
f(-1)=(-1)3-3×(-1)=2,
f(1)=13-3×1=-2,
f(2)=23-3×2=2,
∴f(x)max=2,f(x)min=-2,
∴函数f(x)的极差为:2-(-2)=4.
故答案为:1,4.