早教吧作业答案频道 -->数学-->
高数中值定理证明题已知函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,试着证明开区间(0,1)内,至少存在一点ξ使得f′(ξ)=-(1/ξ)f(ξ)(ξ∈0,1)设f(x)在[0,1]上连续在(0,1)
题目详情
高数中值定理证明题
已知函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,试着证明开区间(0,1)内,至少存在一点ξ使得f′(ξ)= -(1/ξ)f(ξ)(ξ∈0,1)
设f(x)在[0,1]上连续在(0,1)内可导,证明存在ξ∈(0,1)使得,f(ξ)+f′(ξ)=e的-ξ次幂[f(1)e-f(0)]
已知函数f(x)在闭区间[0,1]上连续,在开区间(0,1)内可导,且f(1)=0,试着证明开区间(0,1)内,至少存在一点ξ使得f′(ξ)= -(1/ξ)f(ξ)(ξ∈0,1)
设f(x)在[0,1]上连续在(0,1)内可导,证明存在ξ∈(0,1)使得,f(ξ)+f′(ξ)=e的-ξ次幂[f(1)e-f(0)]
▼优质解答
答案和解析
1.
令g(x)=xf(x)
g(0)=g(1)=0 罗尔定理 g′(ξ)= 0
2.
令g(x)=f(x)e^x
拉格朗日 g(1)-g(0)= g′(ξ)
令g(x)=xf(x)
g(0)=g(1)=0 罗尔定理 g′(ξ)= 0
2.
令g(x)=f(x)e^x
拉格朗日 g(1)-g(0)= g′(ξ)
看了 高数中值定理证明题已知函数f...的网友还看了以下:
导函数数学题会的请进函数f在I连续,如果f导函数g在I上一点A不连续,那g在A点肯定是第二类间断点 2020-05-14 …
求解一道关于导数的题f(x)在点x0处满足f(x0)的一阶导数等于二阶导数等于0 并且f(x0)的 2020-05-17 …
致命性故障发生在系统上电自检期间,一般导致()。 2020-05-31 …
如何证明一个抽象函数在定于区间内可导,一般步骤是什么f(x)在(0,+无穷)上连续,且对任意X1X 2020-07-16 …
可导必连续?f(x)在一点可导,则它必在该点连续.如果在一个区间上呢?如:f(x)的二阶导数在a, 2020-07-20 …
已知a,b,c三点属于同一个区间内,fa的一阶导数大于0,fb的一阶导数小于0.求证fc的二阶导数 2020-07-20 …
f(0)的2阶导数存在的条件?f(0)的2阶导数存在的条件是f(x),f(x)的一阶导数在x=O连 2020-07-23 …
闭区间上可导的疑问如果函数f(x)在开区间(a,b)内可导且f'+(a)(点a的右导数)及f'-( 2020-07-30 …
f(x)在开区间(a,b)导数大于等于0,f(a)=0,为什么书上说f(x)在(a,b)上是大于0 2020-08-01 …
在导线、220V电源、一个灯泡构成的电路中,一只鸟的爪子抓在灯泡两端,另一只抓在灯泡与电源之间一段导 2020-11-08 …