早教吧作业答案频道 -->数学-->
如何证明一个抽象函数在定于区间内可导,一般步骤是什么f(x)在(0,+无穷)上连续,且对任意X1X2(x1x2在定义区间内)有f(x1乘以x2)=f(x1)+f(x2),已知f'(1)=1,证明f(x)在(0,+无穷)上可导,并求出f‘(x)
题目详情
如何证明一个抽象函数在定于区间内可导,一般步骤是什么
f(x)在(0,+无穷)上连续,且对任意X1 X2(x1x2在定义区间内)有f(x1乘以x2)=f(x1)+f(x2),已知f'(1)=1,证明f(x)在(0,+无穷)上可导,并求出f‘(x)
f(x)在(0,+无穷)上连续,且对任意X1 X2(x1x2在定义区间内)有f(x1乘以x2)=f(x1)+f(x2),已知f'(1)=1,证明f(x)在(0,+无穷)上可导,并求出f‘(x)
▼优质解答
答案和解析
取x1=x2=1
则f(1*1)=f(1)+f(1)
故f(1)=0
取x1=x,x2=1/y
得f(x/y)=f(x)+f(1/y)
而f(y*1/y)=f(y)+f(1/y)=f(1)=0
故f(1/y)=-f(y)
故得f(x)-f(y)=f(x/y)
以上都是为下面做准备,主要得出了f(1)=0和f(x)-f(y)=f(x/y)两个结论
由f'(1)=1,即lim(h->0) [f(1+h)-f(1)]/h=lim(h->0) f(1+h)/h = 1
而f'(x)=lim(h->0) [f(x+h)-f(x)]/h=lim(h->0) f(1 + h/x)/h = (1/x) * lim(h->0) f(1+h/x)/(h/x)=1/x
所以f(x)在(0,+无穷)上可导,而f'(x)=1/x
则f(1*1)=f(1)+f(1)
故f(1)=0
取x1=x,x2=1/y
得f(x/y)=f(x)+f(1/y)
而f(y*1/y)=f(y)+f(1/y)=f(1)=0
故f(1/y)=-f(y)
故得f(x)-f(y)=f(x/y)
以上都是为下面做准备,主要得出了f(1)=0和f(x)-f(y)=f(x/y)两个结论
由f'(1)=1,即lim(h->0) [f(1+h)-f(1)]/h=lim(h->0) f(1+h)/h = 1
而f'(x)=lim(h->0) [f(x+h)-f(x)]/h=lim(h->0) f(1 + h/x)/h = (1/x) * lim(h->0) f(1+h/x)/(h/x)=1/x
所以f(x)在(0,+无穷)上可导,而f'(x)=1/x
看了 如何证明一个抽象函数在定于区...的网友还看了以下:
已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x 2020-06-24 …
∫arctan√x/(1+x)√xdx=2∫arctan√x/(1+x)d√x=2∫arctan√ 2020-07-22 …
下列四个集合中空集有1.{x|x=3=3}2.{(x,y)|y²=-x²}3.{x|x平方≤0}4 2020-07-30 …
In2x的导数问题Inx的导数是1/X,那In2x的导数不应该是1/(2x)*2=1/X么,但是( 2020-07-31 …
已知函数f(x)=2lnxk(x-1/x)(k∈R)⑴当k=-1时,求函数y=f(x)的...已知函 2020-10-31 …
已知函数f(x)=2lnx+k(x-1/x)(k∈R)⑴当k=-1时,求函数y=f(x)的...已知 2020-10-31 …
若x>0,y>0,且x+y≥4,则下列各式成立的有①1/(x+y)≥1/4②1/x+1/y≥1③√x 2020-10-31 …
∫(-x^2-2)/(x^2+x+1)^2dx的积分是多少,因式分解后化到一个部分有∫1/(x^2+ 2020-11-01 …
已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b,当-1≤x≤1时|f(x) 2020-11-26 …
关于高中物理选修系列的编号选修系列编号的规律是怎样的?物理选修有1-x,2-x,3-x,但并不都是不 2021-01-01 …