早教吧作业答案频道 -->数学-->
F(x)是单调可导函数f(x)的反函数,且f(1)=2,f'(1)=三分之根号三,证明F'(2)=负的根号三
题目详情
F(x)是单调可导函数f(x)的反函数,且f(1)=2,f'(1)=三分之根号三,证明F'(2)=负的根号三
▼优质解答
答案和解析
F'(2)=根号三吧.
利用F'(y)=1/f'(x)
利用F'(y)=1/f'(x)
看了 F(x)是单调可导函数f(x...的网友还看了以下:
函数问题f(x)二阶连续可导,f(0)=f(1)=0,f(x)在区间[0,1]上的最小函数问题f( 2020-05-14 …
证明函数非奇非偶比如f(x)=ax+1/x²,参考答案写的是当a≠0时、用特殊数值法取f(1)得出 2020-06-05 …
证明一个函数处处可导设f(x)满足:1.f(x+y)=f(x)+f(y),对一切x,y属于R2.f 2020-06-12 …
证明f'(ξ)/f(ξ)=f'(1-ξ)/f(1-ξ)设f(x)在[0,1]上连续,在(0,1)内 2020-06-12 …
设f(x)在(-∞,+∞)内可导,且F(x)=f(x^2-1)+f(1-x^2),证明F'(1)= 2020-06-15 …
数学,设f(x)在[1,3]连续,在(1,3)可导,且f(3)=0,证明至少存一点a∈(1,3), 2020-07-16 …
微积分设函数f(x)在[0,1]上连续,在(0,1)内可导,有f(0)=f(1)=0.证明:至少微 2020-07-31 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
f(x)在[0,1]上二阶可微且f'(0)=f'(1)=0,则存在c,使得f''(c)≥4|f(1) 2020-11-03 …
设f(x)在(0,1)连续,在(0,1)内可导,证明:存在x属于(0,1),使得f(x)+fx的导数 2021-01-13 …