早教吧作业答案频道 -->其他-->
高中数学重要函数极限的证明Lim(1+1/n)n如何证?如题当N--->无穷大时(1+1/n)^n的值--->自然对数底如何证明给个清晰的网页连结最好还有数学书上没给出证明问老师老师说要用到高数所以请教
题目详情
高中数学重要函数极限的证明Lim(1+1/n)n如何证?
如题
当N--->无穷大时
(1+1/n)^n的值--->自然对数底
如何证明
给个清晰的网页连结最好
还有
数学书上没给出证明
问老师老师说要用到高数
所以请教
如题
当N--->无穷大时
(1+1/n)^n的值--->自然对数底
如何证明
给个清晰的网页连结最好
还有
数学书上没给出证明
问老师老师说要用到高数
所以请教
▼优质解答
答案和解析
首先需要二项式定理:
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立。
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0。因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1。余下分母。于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n! (式二)
当n -> +∞时,你可以用计算机,或笔计算此值。这一数值定义为e。
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值。
(a+b)^n=∑ C(i=0 –> i=n)n i a^(n-i) * b^i (式一)
用数学归纳法证此定理:
n=1 (a+b)^1 a^(1-0)*b^0+a^(1-1)*b^1
a+b
故此,n=1时,式一成立。
设n1为任一自然数,假设n=n1时,(式一)成立 ,即:
(a+b)^n1=∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i (式二)
则,当n=n1+1时:
式二两端同乘(a+b)
[(a+b)^n1]*(a+b)=[∑ C(i=0 –> i=n1)n1 i a^(n1-i) * b^i]*(a+b)
=> (a+b)^(n1+1)= ∑ C(i=0 –> i=(n1+1))(n1+1) i a^((n1+1)-i) * b^i ( 据乘法分配律)
因此二项式定理(即式一成立)
下面用二项式定理计算这一极限:
(1+1/n)^n (式一)
用二项式展开得:
(1+1/n)^n = 1^n+(n/1)(1/n)+[(n(n-1))/(2*1)]*(1/n)^2+[(n(n-1)(n-2))/(3*2*1)]*(1/n)^3 + … +[(n(n-1)(n-2) …3)/((n-2)(n-1) … 2*1)]*(1/n)^(n-2)+ [(n(n-1)(n-2) …3*2)/((n-1)(n-2)(n-1) … 2*1)]*(1/n)^(n-1)+ [(n(n-1)(n-2) …3*2*1)/(n(n-1)(n-2)(n-1) … 2*1)]*(1/n)^n
由于二项展开式系数项的分子乘积的最高次项与(1/n)的次数相同,而系数为1,因此,最高次项与(1/n)的相应次方刚好相约,得1,低次项与1/n的相应次方相约后,分子剩下常数,而分母总余下n的若干次方,当n -> +∞,得0。因此总的结果是当n -> +∞,二项展开式系数项的各项分子乘积与(1/n)的相应项的次方相约,得1。余下分母。于是式一化为:
(1+1/n)^n =1+1+1/2!+1/3!+1/4!+1/5!+1/6!+ … + 1/n! (式二)
当n -> +∞时,你可以用计算机,或笔计算此值。这一数值定义为e。
补充:
将式二和公比为1/2的等比数列比较,其每一项都小于此等比数列,而此等比数列收敛,因此,式二必定收敛于一固定数值。
看了 高中数学重要函数极限的证明L...的网友还看了以下:
高一数学,关于对数的运算性质的,帮帮忙好不?高一数学,关于对数的运算性质的题目,想了半天都没想到, 2020-05-16 …
已知函数f(x)=(x∧2-3x+9/4)e∧x其中e为自然数的底数.(1)函数f(x)的图像在x 2020-06-03 …
数列{an}和{bn}的前n项和分别记为An和Bn,已知an=-n-3/2,4Bn-12An=13 2020-06-06 …
已知函数f(x)=x^2-alnx,e为自然对数的底数,常数a>0.(1)求函数fx的极小值已知函 2020-06-06 …
求解高一数学题:一个等腰三角形底边上的高等于5,底边两端点的坐的标是(-4,0)(4,0),求它的 2020-07-13 …
高一指数函数比较大小底数相同,指数不同的知道了指数相同,底数不同的知道了指数不同,底数也不同的。如 2020-07-30 …
高一数学函数问题(1)利用关系式logaN=b=>a^b=N证明换底公式logaN=logmN/l 2020-07-30 …
高中数学重要函数极限的证明Lim(1+1/n)n如何证?如题当N--->无穷大时(1+1/n)^n 2020-08-01 …
除了无理数π和自然对数的底数e以外.除了无理数π和自然对数的底数e以外,有没有其他有应用价值的无理 2020-08-02 …
高一数学题,请各位帮帮忙求y=(e^x-e^-x)÷2的反函数即求:(自然对数底的x次幂减自然对数底 2020-12-08 …