早教吧 育儿知识 作业答案 考试题库 百科 知识分享

关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m-1)2+(n-1)2≥2;

题目详情

关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正.给出三个结论:①这两个方程的根都是负根;②(m-1)2+(n-1)2≥2;③-1≤2m-2n≤1.其中正确结论的个数是(  )

A. 0个

B. 1个

C. 2个

D. 3个

▼优质解答
答案和解析
设方程x2+2mx+2n=0的两根为x1、x2,方程y2+2ny+2m=0的两根为y1、y2
①∵关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,
∴x1•x2=2n>0,y1•y2=2m>0,
∵x1+x2=-2m,y1+y2=-2n,
∴这两个方程的根都是负根,①正确;
②∵关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,
∴4m2-8n≥0,4n2-8m≥0,
∴m2-2n≥0,n2-2m≥0,
∴(m-1)2+(n-1)2=m2-2n+1+n2-2m+1≥2,②正确;
③∵y1•y2=2m,y1+y2=-2n,
∴2m-2n=y1•y2+y1+y2=(y1+1)(y2+1)-1,
∵y1、y2均为负整数,
∴(y1+1)(y2+1)≥0,
∴2m-2n≥-1.
∵x1•x2=2n,x1+x2=-2m,
∴2n-2m=x1•x2+x1+x2=(x1+1)(x2+1)-1,
∵x1、x2均为负整数,
∴(x1+1)(x2+1)≥0,
∴2n-2m≥-1,即2m-2n≤1.
∴-1≤2m-2n≤1,③成立.
综上所述:成立的结论有①②③.
故选D.