早教吧作业答案频道 -->其他-->
一道微分方程的题题目:求微分方程yy''=2(y'²-y')满足条件y(0)=1,y'(0)=2的特解解答:这是一道可降阶的高阶方程,且是y''=f(y,y')型所以,原方程为:yp(dp/dy)=2p(p-1)分离变量:dp/(p-1)=2/ydy两边积
题目详情
一道微分方程的题
题目:求微分方程 yy''=2(y'²-y')满足条件 y(0)=1, y'(0)=2的特解
解答:
这是一道可降阶的高阶方程,且是 y''=f(y,y')型
所以,原方程为:yp(dp/dy)=2p(p-1)
分离变量:dp/(p-1)=2/ydy
两边积分:ln(p-1)=2lny+c1
第一个疑问:
等式左边没有取绝对值,解答中说,因为y'(0)=2
那么由于y''存在,所以y'连续
这个怎么证明呢
第二个疑问:
接上:可知 因为y'(0)=2
说明在零点的一个小邻域内,p接近2,也就是说p>1
首先我觉得p接近2,也不能说p>1吧
而且
就算“在零点的一个小邻域内,也就是说p>1”
跟去绝对值号有啥关系呢?
又不是只在0点附近积分?
第三个疑问,同第二个类似
等式右边:2lny+c1
说是因为y' 存在,所以y连续,所以y在接近0的附近趋于1
所以y>0
即不带绝对值符号
这几个地方不明白,好心人解答一下吧
多谢..
题目:求微分方程 yy''=2(y'²-y')满足条件 y(0)=1, y'(0)=2的特解
解答:
这是一道可降阶的高阶方程,且是 y''=f(y,y')型
所以,原方程为:yp(dp/dy)=2p(p-1)
分离变量:dp/(p-1)=2/ydy
两边积分:ln(p-1)=2lny+c1
第一个疑问:
等式左边没有取绝对值,解答中说,因为y'(0)=2
那么由于y''存在,所以y'连续
这个怎么证明呢
第二个疑问:
接上:可知 因为y'(0)=2
说明在零点的一个小邻域内,p接近2,也就是说p>1
首先我觉得p接近2,也不能说p>1吧
而且
就算“在零点的一个小邻域内,也就是说p>1”
跟去绝对值号有啥关系呢?
又不是只在0点附近积分?
第三个疑问,同第二个类似
等式右边:2lny+c1
说是因为y' 存在,所以y连续,所以y在接近0的附近趋于1
所以y>0
即不带绝对值符号
这几个地方不明白,好心人解答一下吧
多谢..
▼优质解答
答案和解析
第一个疑问:
y'是一个函数,y''是它的导数
一个函数的导数存在,那么它一定连续
(这就是我们常说的由可导可以推出连续,由连续不能推出可导)
证明:设一个函数f(x),它的导数f'(x)存在
因为lim(△x→0)△y=lim(△x→0)(△y/△x)△x=f'(x)lim(△x→0)△x=0
所以由可导可以推出连续
第二个疑问:
微分方程通解的定义是:
如果含有n个独立的任意常数C1,C2,…,Cn的函数y=f(x,C1,C2,…,Cn)是方程
F(x,y,y',y'',…,y^(n))=0的解,则这样的解称为微分方程的通解
就是说通解只需要满足两个条件:
①含有阶数个常数
②是微分方程的解
那么就是说通解不需要是全部解,只要含有那么多常数,并且是微分方程的解就行了
所以只求出p>1这种情况的解也是微分方程的通解
第三个疑问:与第二个一样,只需要求出y>0的情况就可以了
y'是一个函数,y''是它的导数
一个函数的导数存在,那么它一定连续
(这就是我们常说的由可导可以推出连续,由连续不能推出可导)
证明:设一个函数f(x),它的导数f'(x)存在
因为lim(△x→0)△y=lim(△x→0)(△y/△x)△x=f'(x)lim(△x→0)△x=0
所以由可导可以推出连续
第二个疑问:
微分方程通解的定义是:
如果含有n个独立的任意常数C1,C2,…,Cn的函数y=f(x,C1,C2,…,Cn)是方程
F(x,y,y',y'',…,y^(n))=0的解,则这样的解称为微分方程的通解
就是说通解只需要满足两个条件:
①含有阶数个常数
②是微分方程的解
那么就是说通解不需要是全部解,只要含有那么多常数,并且是微分方程的解就行了
所以只求出p>1这种情况的解也是微分方程的通解
第三个疑问:与第二个一样,只需要求出y>0的情况就可以了
看了 一道微分方程的题题目:求微分...的网友还看了以下:
设P是椭圆x^2/4+y^2=1上的任意一点,O为坐标原点,F为椭圆的左焦点,点M满足设P是椭圆x 2020-05-16 …
已知函数f(x)满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q,则f(72)等于 2020-05-17 …
已知函数f(x)对任意实数p、q都满足:f(p+q)=f(p)×f(q),且f(1)=3分之1,( 2020-06-03 …
如图,已知正方体ABCD-A1B1C1D1的棱长为4,点E,F分别是线段AB,C1D1上的动点,点 2020-06-27 …
条件概率问题P(E|F)=P(EF)/P(F)这个是如何从最原始的公式推导出来的?另外P(EF)我 2020-07-09 …
自考.工程经济学.(F/P,8%,5)=1.469(P/F,8%,5)=0.6806(F/A,8% 2020-07-18 …
还有一道题:(P/F,5%,1)=0.9524;(P/F,5%,5)=0.7835(F/P,5%, 2020-07-18 …
已知函数f(x)对于任意实数a,b满足f(ab)=f(a)+f(b),且f(2)=p,f(3)=q 2020-07-19 …
一道函数题二次函数f(x)=px^2+qx+r中,实数p,q,r满足p/(m+2)+q/(m+1) 2020-07-26 …
这道题来自2012河南郑州第一次质量预测,如果觉得我把题打错了,可以去网上看看原题.:定义在(-1, 2020-11-12 …