早教吧作业答案频道 -->其他-->
已知函数f(x-2)=ax2-(a-3)x+a-2(a为负整数)的图象经过点(m-2,0),m∈R,设g(x)=f[f(x)],F(x)=p•g(x)+f(x),问是否存在实数p(p<0)使得F(x)在区间(-∞,f(2))上是
题目详情
已知函数f(x-2)=ax2-(a-3)x+a-2(a为负整数)的图象经过点(m-2,0),m∈R,设 g(x)=f[f(x)],F(x)=p•g(x)+f(x),问是否存在实数p(p<0)使得 F(x)在区间 (-∞,f(2)) 上是减函数,且在区间 (f(2),0)上是增函数?并证明你的结论.
▼优质解答
答案和解析
存在,证明如下:
∵f(x-2)=ax2-(a-3)x+a-2
∴f(x)=a(x+2)2-(a-3)(x+2)+a-2
∵函数的图象经过点(m-2,0),
∴am2-(a-3)m+a-2=0
故△=(a-3)2-4a(a-2)≥0
即3a2-2a-9≤0
解得
≤a≤
又∵a为负整数
∴a=-1
∴f(x)=-(x+2)2+4(x+2)-3=-x2+1
∴f(2)=-3
∴g(x)=f[f(x)]=-(-x2+1)2+1=-x4+2x2,
则F(x)=p•g(x)+f(x)=-px4+(2p-1)x2+1
则F′(x)=-4px3+(4p-2)x=x[-4px2+(4p-2)]
∵p<0
∴-4px2+(4p-2)=0存在两个互为相反的根-n,n
令F′(x)=0,则x=-n,或x=0,或x=n
当x<-n时,F′(x)<0,F(x)为减函数,
当-n<x<0时,F′(x)>0,F(x)为增函数,
故-n=-3,即n=3
∴p=−
∵f(x-2)=ax2-(a-3)x+a-2
∴f(x)=a(x+2)2-(a-3)(x+2)+a-2
∵函数的图象经过点(m-2,0),
∴am2-(a-3)m+a-2=0
故△=(a-3)2-4a(a-2)≥0
即3a2-2a-9≤0
解得
1−2
| ||
| 3 |
1+2
| ||
| 3 |
又∵a为负整数
∴a=-1
∴f(x)=-(x+2)2+4(x+2)-3=-x2+1
∴f(2)=-3
∴g(x)=f[f(x)]=-(-x2+1)2+1=-x4+2x2,
则F(x)=p•g(x)+f(x)=-px4+(2p-1)x2+1
则F′(x)=-4px3+(4p-2)x=x[-4px2+(4p-2)]
∵p<0
∴-4px2+(4p-2)=0存在两个互为相反的根-n,n
令F′(x)=0,则x=-n,或x=0,或x=n
当x<-n时,F′(x)<0,F(x)为减函数,
当-n<x<0时,F′(x)>0,F(x)为增函数,
故-n=-3,即n=3
∴p=−
| 1 |
| 16 |
看了 已知函数f(x-2)=ax2...的网友还看了以下:
若函数f(x)=ax+1/X(a属于R),则下列结论正确的是?A:任意a∈R,f(x)在(0,+∞ 2020-04-27 …
已知直线l:y=mx+1与曲线C:ax2+y2=2(m、a∈R)交于A、B两点,O为坐标原点.是否 2020-05-13 …
设函数f(x)=(x-a)2+(lnx2-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤b 2020-05-13 …
已知函数f(x)=x2-4x+a+3,a∈R.(Ⅰ)若函数y=f(x)的图象与x轴无交点,求a的取 2020-06-08 …
设函数(a∈R)。(1)讨论函数f(x)的单调性;(2)若f(x)有两个极值点x1,x2,记过点A 2020-07-16 …
设函数f(x)=(x-a)2+(lnx2-2a)2,其中x>0,a∈R,存在x0使得f(x0)≤4 2020-07-20 …
已知两圆的半径分别为R和r(R>r),圆心距为d.如图,若数轴上的点A表示R-r,点B表示R+r, 2020-07-31 …
已知函数f(x)=12x2+(1-a)x-alnx,a∈R.(1)若f(x)存在极值点为1,求a的 2020-07-31 …
文科函数,急1函数f(x)=x^3-a^x-1,若f(x)在实数集R上单调递增,求实数a的取值范围? 2020-11-21 …
已知函数f(x)=lnx-ax(a∈R)(Ⅰ)若函数f(x)无零点,求实数a的取值范围;(Ⅱ)若存在 2020-12-26 …