早教吧作业答案频道 -->数学-->
已知函数f(x)=12x2+(1-a)x-alnx,a∈R.(1)若f(x)存在极值点为1,求a的值;(2)若f(x)存在两个不同零点x1,x2,求证:x1+x2>2.
题目详情
已知函数f(x)=
x2+(1-a)x-alnx , a∈R.
(1)若f(x)存在极值点为1,求a的值;
(2)若f(x)存在两个不同零点x1,x2,求证:x1+x2>2.
| 1 |
| 2 |
(1)若f(x)存在极值点为1,求a的值;
(2)若f(x)存在两个不同零点x1,x2,求证:x1+x2>2.
▼优质解答
答案和解析
(本小题满分12分)
(1)f′(x)=x+1-a-
,因为f(x)存在极值点为1,所以f'(1)=0,即2-2a=0,a=1,经检验符合题意,所以a=1.(4分)
(2)f′(x)=x+1-a-
=(x+1)(1-
)(x>0)
①当a≤0时,f'(x)>0恒成立,所以f(x)在(0,+∞)上为增函数,不符合题意;
②当a>0时,由f'(x)=0得x=a,
当x>a时,f'(x)>0,所以f(x)为增函数,当0<x<a时,f'(x)<0,所f(x)为减函数,
所以当x=a时,f(x)取得极小值f(a)
又因为f(x)存在两个不同零点x1,x2,所以f(a)<0,即
a2+(1-a)a-alna<0
整理得lna>1-
a,
作y=f(x)关于直线x=a的对称曲线g(x)=f(2a-x),
令h(x)=g(x)-f(x)=f(2a-x)-f(x)=2a-2x-aln
h′(x)=-2+
=-2+
≥0所以h(x)在(0,2a)上单调递增,
不妨设x1<a<x2,则h(x2)>h(a)=0,即g(x2)=f(2a-x2)>f(x2)=f(x1),
又因为2a-x2∈(0,a),x1∈(0,a),且f(x)在(0,a)上为减函数,
故2a-x2<x1,即x1+x2>2a,又lna>1-
a,易知a>1成立,故x1+x2>2.(12分)
(1)f′(x)=x+1-a-
| a |
| x |
(2)f′(x)=x+1-a-
| a |
| x |
| a |
| x |
①当a≤0时,f'(x)>0恒成立,所以f(x)在(0,+∞)上为增函数,不符合题意;
②当a>0时,由f'(x)=0得x=a,
当x>a时,f'(x)>0,所以f(x)为增函数,当0<x<a时,f'(x)<0,所f(x)为减函数,
所以当x=a时,f(x)取得极小值f(a)
又因为f(x)存在两个不同零点x1,x2,所以f(a)<0,即
| 1 |
| 2 |
整理得lna>1-
| 1 |
| 2 |
作y=f(x)关于直线x=a的对称曲线g(x)=f(2a-x),
令h(x)=g(x)-f(x)=f(2a-x)-f(x)=2a-2x-aln
| 2a-x |
| x |
| 2a2 |
| (2a-x)x |
| 2a2 |
| -(x-a)2+a2 |
不妨设x1<a<x2,则h(x2)>h(a)=0,即g(x2)=f(2a-x2)>f(x2)=f(x1),
又因为2a-x2∈(0,a),x1∈(0,a),且f(x)在(0,a)上为减函数,
故2a-x2<x1,即x1+x2>2a,又lna>1-
| 1 |
| 2 |
看了 已知函数f(x)=12x2+...的网友还看了以下:
已知函数f(x)定义在R上,对∀x,y∈R,有f(x+y)+f(x-y)=2f(x)•f(y),且 2020-05-13 …
设定义在R上的函数f(x)对任意x1、x2满足f(x1+x2)=f(x1)f(x2),且f(x)在 2020-05-17 …
求两函数极限区间的题目1.设f(x)在[0,2a]上连续且发f(0)=f(2a)证明:至少存在一点 2020-06-05 …
有关奇偶函数的问题设g(x)为奇函数,且h=f(g(x)),证明:当f(x)为奇函数时,h(x)必 2020-06-07 …
设函数f(x)在[0,3]上连续,在(0,3)内存在二阶导数,且2f(0)=∫20f(x)dx=f 2020-06-12 …
几道高数题,1.求lim(n→∞)sin^2(∏√(n^2+n))2.设f(x)在[a,+∞)上连 2020-07-31 …
高数证明问题1.设函数f(x)在闭区间[0,A]上连续,且f(0)=0,如果f'(x)存在且为增函 2020-08-01 …
证明题(本大题5分)1.设f(x)在[0,1]上连续,且f(0)=0,f(1)=1.证明:至少存在 2020-08-01 …
1)设f(x)在[a,b]上可微,且f(a)=f(b)=0,证明:在(a,b)内存在一点ξ,使f'( 2020-12-28 …
设定义在(-∞,+∞)上的函数f(x)满足关系f(x+y)=f(x)+f(y),∀x,y∈(-∞,+ 2021-01-20 …